SP422 TRANSP2 - Transposing is Even More Fun(Burnside引理,莫比乌斯反演)

解析

很巧妙的题。
关键是要利用好边长为2的整数次幂的性质。
对下标从1开始党极不友好。

首先显然答案就是 2 a + b 2^{a+b} 2a+b -环。
让下标均从0开始。
对于一个点 ( i , j ) (i,j) (i,j),它原来的内存地址为 i ∗ 2 a + j i*2^a+j i2a+j,转置后的地址为 j ∗ 2 b + i j*2^b+i j2b+i
可以看出,其变换就相当于把一个长度为 a + b a+b a+b 的二进制串的前a位放到串尾。
那么环其实就相当于这个置换的等价类的数量。
g = gcd ⁡ ( a , b ) , n = a + b g g=\gcd(a,b),n=\frac {a+b} g g=gcd(a,b),n=ga+b,那么本质就是 g 个大小为 n 的环独立进行 [ 0 , n − 1 ] [0,n-1] [0,n1] 的轮换。
接下来的反演就不难了。
c i r c l e = 1 n ∑ i = 1 n ( 2 gcd ⁡ ( i , n ) ) g = 1 n ∑ d ∣ n 2 d g ∑ i = 1 n [ gcd ⁡ ( i , n ) = d ] = 1 n ∑ d ∣ n 2 d g φ ( n d ) circle=\frac 1 n\sum_{i=1}^n(2^{\gcd(i,n)})^g=\frac 1 n\sum_{d|n}2^{dg}\sum_{i=1}^n[\gcd(i,n)=d]=\frac 1 n\sum_{d|n}2^{dg}\varphi(\frac n d) circle=n1i=1n(2gcd(i,n))g=n1dn2dgi=1n[gcd(i,n)=d]=n1dn2dgφ(dn)
预处理欧拉函数和因数,复杂度 O ( n ln ⁡ n ) − O ( d ( n ) + log ⁡ n ) O(n\ln n)-O(d(n)+\log n) O(nlnn)O(d(n)+logn)
不要用 vector ,emplace_back 奇慢!

代码

//luogu
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned ll
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define ok debug("OK\n")
inline ll read() {
  ll x(0),f(1);char c=getchar();
  while(!isdigit(c)) {if(c=='-') f=-1;c=getchar();}
  while(isdigit(c)) {x=(x<<1)+(x<<3)+c-'0';c=getchar();}
  return x*f;
}

const int N=1e6+100;
const int inf=1e9;
const int mod=1000003;

inline ll ksm(ll x,ll k){
  ll res=1;
  while(k){
    if(k&1) res=res*x%mod;
    x=x*x%mod;
    k>>=1;
  }
  return res;
}

int n,m;

int prime[N],tot,v[N],phi[N];
struct node{
	int to,nxt;
}p[N*30];
int fi[N],cnt;
inline void add(int x,int y){
	p[++cnt]=(node){y,fi[x]};fi[x]=cnt;
}
ll f[N],mi[N];
void init(int n){
  phi[1]=1;
  for(int i=2;i<=n;i++){
    if(!v[i]){
      phi[i]=i-1;
      prime[++tot]=i;
    }
    for(int j=1;j<=tot&&prime[j]<=n/i;j++){
      int now=prime[j];
      v[now*i]=now;
      if(i%now==0){
	phi[now*i]=now*phi[i];break;
      }
      else phi[now*i]=phi[now]*phi[i];
    }
  }
  for(int i=1;i<=n;i++){
    for(int j=i;j<=n;j+=i) add(j,i);
  }
  mi[0]=1;
  for(int i=1;i<=n;i++) mi[i]=mi[i-1]*2%mod;  
  return;
}
int gcd(int x,int y){
  return y?gcd(y,x%y):x;
}
void work(){
  int a=read(),b=read();
  if(a==0||b==0){
    printf("0\n");return;
  }
  int g=gcd(a,b),n=(a+b)/g;
  ll ans(0);    
  for(int i=fi[n];i;i=p[i].nxt){
    int d=p[i].to;
    (ans+=phi[n/d]*mi[g*d])%=mod;
    //printf("T=%d  f=%lld tim=%d\n",T,f[T],n/(T/x));
  }
  ans=ans*ksm(n,mod-2)%mod;
  ans=(ksm(2,a+b)-ans+mod)%mod;
  printf("%lld\n",ans);
}

signed main(){
  #ifndef ONLINE_JUDGE
  freopen("a.in","r",stdin);
  freopen("a.out","w",stdout);
  #endif
  init(1000000);
  int T=read();
  while(T--) work();
  return 0;
}
/*
 */

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值