Bayes' theorem
1. 基本内容
P
(
H
∣
E
)
=
P
(
H
)
×
P
(
E
∣
H
)
P
(
E
)
P(H|E)=\tfrac{P(H)\times P(E|H)}{P(E)}
P(H∣E)=P(E)P(H)×P(E∣H)
条件:B事件集 是 A事件集 的 子集
结论:
2. 例子与证明过程
Steve:A meek and tidy soul一个温顺而又井井有条的人, he has a need for order and structure, and a passion for detail.
那么,你认为以下哪种说法可能性更大:
- Steven是一位农民
- Steven是一位图书管理员
以上是两位心理学家有关“人对事物的判断”、“什么时候这些判断与概率论定律建议的做法之间产生非理性的矛盾”研究的例子之一。
上述的这个例子就阐述了一个特定类型的非理性alleged irrationality
其中的非理性在于:人们在进行判断时,基于新得到的知识直接进行计算,而不是全面地参考可能影响的因素。
还是以前文中的例子进行阐述,
人们基于Steven的性格特征从而判断其职业可能性的出发点是正确的,“图书管理员中井井有条的人所占比例,一定是大于,农民中井井有条的人所占比例”。
但是,判断时考虑不全面,需要考虑到除了已知外还有哪些因素是有关的。判断Steven职业需要考虑
- 实际人群中的职业人数比例
- 职业性格特征与其相符程度
前文例子正确计算方法应为:
- 根据数据统计,美国农民人数为图书管理员人数的20倍。因此假设农民有200人,图书管理员有10人。
- 农民中性格中性格井井有条的人占10%,为20人;图书管理员中性格井井有条的人占40%,为4人。
- 因此在样本总数为210的人群中,性格井井有条的人数为24人。
- 在这些贴合Steven性格条件的人群中,农民的比例为83%,图书管理员的比例为16.7%。
即使图书管理员中符合条件的比例更高,抵不过农民数量多、基数大。
贝叶斯基础理论的根本在于,
新证据不能直接凭空决定你的看法,而是应该用于更新你的先验看法prior beliefs.
The heart of the Bayes’ theorem
推理应该是,
根据所有证据来限制概率空间,再考虑比例
3. 应用场景
- 先验条件prior:考虑新证据之前,假设成立的可能性P(H)
- 似然概率likelihood假设成立的情况下,得到证据的概率P(E|H)
- P ( H ∣ E ) = P ( H ) × P ( E ∣ H ) P ( E ) P(H|E)=\tfrac{P(H)\times P(E|H)}{P(E)} P(H∣E)=P(E)P(H)×P(E∣H)
综上所述,即为贝叶斯理论的全部内容。
再回到最开头的例子,
- 其中有关于性格和印象的问题,改变的是对应的似然概率。
- 那些有关于自然本能的感觉(前文例子中的性格和印象的特征),不应该直接决定看法,而是应该更新看法、修正直觉。