贝叶斯定理、例子

Bayes’ Theorem

  • 事件的发生都是有因果的(这里的因果不是必然关系,他们之间的联系是用概率刻画的),原因(或者因素)是x, 结果(或者影响)是y,贝叶斯定理告诉一个事实,如果知道因素x已经触发的条件下,产生影响y的概率是Pr(y|x),那我们可以得到产生影响y 的条件下,因素x 被触发的概率Pr(x|y) 为:

    (1)Pr(x|y)=Pr(y|x)Pr(x)Pr(y)

  • 这里Pr(x) 是知道产生影响y前,因素x发生的概率,称为因素x先验概率(prior probability of x)Pr(x|y) 则是知道影响y已经产生,因素x被触发的概率,称为x的 后验概率(posterior probability of x)

例子

令随机变量x 表示一个人说的话是真话(true)或者谎话(false),随机变量y表示一个很牛逼的测谎仪的输出(true or false),已知:

(2)Pr(y=false|x=false)=0.99

(3)Pr(y=true|x=true)=0.95

可以看出来测谎仪确实高大上,钱没白花。现在我们假设x的先验概率是:
(4)Pr(x=false)=0.001

也就是说这个人基本不会说谎话,但是对这个人用测谎仪的时候,测谎仪说这个人说了谎话(难道说我不帅了?没毛病老铁)。那怎么办,我们怎么判断?对于测谎仪的可靠性可以比较Pr(x=false|y=false)Pr(x=true|y=false) 的大小来判断。
1. 计算先验Pr(y=false)
(5)Pr(y=false)=Pr(y=false|x=false)Pr(x=false)+Pr(y=false|x=true)Pr(x=true)0.051

  1. 用贝叶斯定理:
    (6)Pr(x=false|y=false)=Pr(y=false|x=false)Pr(x=false)Pr(y=false)0.019

    因此,
    (7)Pr(x=true|y=false)=1Pr(x=false|y=false)0.981

所以,(6)小于(7),结论是测谎仪的输出并不可靠啊,不过我依旧无条件的帅好吧。
注意当先验 Pr(x=false)>0.048时,(6)大于(7),这时候测谎仪的结果变得越来越可信哦。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/NockinOnHeavensDoor/article/details/80345245
个人分类: 概率论
上一篇pip自动生成和安装requirements.txt
下一篇变分自编码器记录与tensorflow代码及pytorch代码分析
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭