数列特点
无限个数
特定顺序
数列和集合区别
集合可以乱序,数列不行
集合出现重复元素依然相同,数列出现新的重复元素就不相等
[1,2,3,4]=[1,2,3,3,4]
对集合来说相等,对数列来说不相等。
数列的表示形式

求数列的单调性
作差,作商,求导,列举法,把极限和某项比较。
有界数列有上界和下界
如何证明一个数列无界?
eg:比较审敛法
2^n+1>2^n
2^n趋于无穷,2^n+1趋于无穷
证明数列收敛
直接证明数列极限
找出N和的关系

夹逼准则

夹逼准则的推论:如果数列的绝对值趋近于0,数列趋于零。
当数列的符号无法确定时,用绝对值证

洛必达法则,无穷/无穷或0/0
洛必达法则是:量级的比较和同除n^p有异曲同工之妙。
数列单调且有界,数列收敛

数列级数(series)的收敛公式和理解:
我们先来看结论:数列|an|收敛于0,且数列|an|递减或最终递减,那么数列级数收敛。
1.数列的几何意义是不连续函数与x轴围成的面积,是无穷积分的简化版。
2.数列收敛于0,是数列级数收敛的必要条件。
证明:
数列级数收敛,数列趋近于0,但数列趋近于0,数列(1/n)不一定收敛。

由1可以引入积分试验(Intergal test)
结论:无穷积分收敛,数列收敛
条件:数列单调减
*数列单调减是为了保证无穷积分能够大于数列级数。(这里隐含比较审敛的思想)
*去除第一块后,把第二块往左移,被积函数恰好大于数列级数,且这个操作不影响结果,如果从第二项开始收敛,那么从第一项开始也会收敛。

数列级数的比较审敛法
大数列的数列级数收敛,小数列的数列级数收敛。
小数列的数列级数发散,大数列的数列级数发散。
交错级数判别法
交错级数一般形式:

证明交错级数收敛
证明数列的绝对值:1.数列|an|收敛于0 2.数列|an|递减或者最终递减。
比值审敛法

如果L<1: 数列级数收敛
L>1:数列级数扩散
L=1:数列级数无法判断
(把他和数列最终递增递减来记)
根判别法法:比较审敛法和等比数列的变形


幂级数:

收敛半径:存在R,|x-a|<R时,数列级数收敛,|x-a|>R时,数列级数扩散。那么对于a+R,a-R两点的单调性,要代入讨论。
如果R无限,数列级数整个区间收敛,如果R=0,数列级数只在a上收敛
用根判别式来求R

缺项幂级函数,看成整体来记

根值判别的运用

一些公式及技巧
单调减的指数函数乘幂函数的收敛于0

证明:一直洛必达法则直到幂函数的系数为0。
由于指数的变化速率太快,使得幂函数的a是1或者k都一样。

的结果

n为项数,C为欧拉常数用来调和级数
习题

累乘无法相消,的极限趋向于1。
这意味着无法对每一项放缩成再相乘只能整体放缩
注意:
巧妙的放缩!
部分资料来源权删:https://baike.baidu.com/item/%E6%A0%B9%E5%80%BC%E5%AE%A1%E6%95%9B%E6%B3%95/9896737?fr=aladdin
https://moodle.scnu.edu.cn/pluginfile.php/1186603/mod_resource/content/4/Slides-2-V.pdf