数列的收敛

若有一数列 an Sk=a1+a2+...+ak 表示数列 an 的前 k 项和。在最通常判断中,i=1ai=A这一等式是否成立就决定了该数列是否收敛。那么对于类似 1,1,1,1... 这种数列是不是就真的在所有的意义上都不收敛?


Cesàro summation

limn1nk=1nSk=A

Cesàro summation由数列的前 n 项和的算术平均值定义,在这个定义下可以很轻松地判断前面提到的已判定发散的数列收敛,且收敛到12( 在Cesàro summable的意义下)。

Abel summation

一个实数序列 k=0ck 是Abel summable且收敛到 s 的,0r<1,则定义如下

A(r)=k=0akrk


limr1A(r)=s

Abel summationCesàro summation更具广泛性,也就是当在Abel收敛的情况下,Cesàro summation一定收敛,但是反过来则不成立。如序列 12+34+5... ,可以计算得到Abel summable且为 14


除此之外,还有诸如Euler summationHölder summationLambert summation等求和方式。

知识共享许可协议
本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 中国大陆许可协议进行许可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值