若有一数列
an
,
Sk=a1+a2+...+ak
表示数列
an
的前
k
项和。在最通常判断中,
Cesàro summation
limn→∞1n∑k=1nSk=A
Cesàro summation由数列的前 n 项和的算术平均值定义,在这个定义下可以很轻松地判断前面提到的已判定发散的数列收敛,且收敛到
Abel summation
一个实数序列
∑∞k=0ck
是Abel summable且收敛到
s
的,
A(r)=∑k=0∞akrk
且
limr→1A(r)=s
Abel summation 比 Cesàro summation更具广泛性,也就是当在Abel收敛的情况下,Cesàro summation一定收敛,但是反过来则不成立。如序列 1−2+3−4+5−... ,可以计算得到Abel summable且为 14 。
除此之外,还有诸如Euler summation、Hölder summation和Lambert summation等求和方式。
本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 中国大陆许可协议进行许可。