题意:
一个n(3<=n<=100)个点的完全图,现在给出n,要求将每条边都染上一种颜色k(1<=k<=n),最终使得所有三个点构成的环(C(n,3)个不同的换)上三条边的颜色和在所有颜色中任选三种颜色的组合(C(n,3)种方案)一一对应,由你来给出染色方案。
本题有多组数据
Input
第一行一个整数T,表示数据组数 接下来T行每行一个整数n,表示完全图的点数
Output
输出由T个部分组成 每个部分的第一行一个整数n,表示完全图的点数 第二行表示构造结果 如果无解输出No solution 否则输出n*(n-1)/2条边的起点、终点和颜色
Input示例
2 4 3
Output示例
4 No solution 3 1 2 3 2 3 1 3 1 2
思路:
一开始没什么思路,找找规律,花了几个发现,先把正n边形外围顺时针从1到n标记一圈,然后所有外围的边所正对的平行边都标记成与其一样的颜色,画个图就明白了。
代码写得比较蠢,想到就写了。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXN = 105;
int g[MAXN][MAXN];
bool vis[MAXN];
struct Edge {
int u, v, col;
};
int main() {
int T;
scanf("%d", &T);
while (T--) {
int n;
scanf("%d", &n);
printf("%d\n", n);
if (n % 2 == 0) {
puts("No solution");
continue;
}
for (int i = 1; i <= n; i++) {
int x = i, y = (i == n ? 1 : i + 1);
for (int j = 1; j <= n; j++) vis[j] = false;
vis[x] = vis[y] = true;
g[x][y] = g[y][x] = i;
for (int j = 1; j < (n - 1) / 2; j++) {
int px = (x == n ? 1 : x + 1), qx = (x == 1 ? n : x - 1);
x = vis[px] ? qx : px;
int py = (y == n ? 1 : y + 1), qy = (y == 1 ? n : y - 1);
y = vis[py] ? qy : py;
vis[x] = vis[y] = true;
g[x][y] = g[y][x] = i;
}
}
vector <Edge> ans;
for (int i = 1; i <= n; i++) {
for (int j = i + 1; j <= n; j++) {
ans.push_back((Edge){i, j, g[i][j]});
}
}
int cnt = ans.size();
for (int i = 0; i < cnt; i++)
printf("%d %d %d%c", ans[i].u, ans[i].v, ans[i].col, i == cnt - 1 ? '\n' : ' ');
}
return 0;
}