题意:
思路:
首先假定向左方向的船都是静止的,那么船要么向右移动要么静止。
对于区间是[L,R]的船,我们根据视角计算出在岸上可以观察这艘船的位置区间[l,r],因为拍摄是可以等待船移动的,因为所有船的速度是一样的,如果我们选定了某个位置,那么这个位置能看到一些静止的船,除此之外,还可以等待该位置左边的且向右行驶的船移动到该位置,所以其实就是在当前位置pos的左边找一个位置pos',使得pos'位置上能看到的向右行驶的船数+pos位置上静止的船数最大即可。
这样就可以利用树状数组来维护,每次区间左端点+1,右端点后一位-1,然后求得的sum(i)就是当前位置能看到的船数,向左和向右的船分别用一个BIT来维护。
另外需要注意到的一点是x,y的区间范围还是很大,需要离散化。
代码:
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 22222;
struct BIT {
int n;
int C[MAXN];
void init(int n) {
this->n = n;
memset(C, 0, sizeof(C));
}
int lowbit(int x) {
return x & -x;
}
void add(int x, int y) {
while (x <= n) {
C[x] += y;
x += lowbit(x);
}
}
int sum(int x) {
int res = 0;
while (x) {
res += C[x];
x -= lowbit(x);
}
return res;
}
} lbit, rbit;
struct Boat {
int l, r, dir;
};
vector <Boat> boat;
int discre(int n) {
int Max = 0;
vector <int> vec;
for (int i = 0; i < (int)boat.size(); i++) {
vec.push_back(boat[i].l);
vec.push_back(boat[i].r);
}
sort(vec.begin(), vec.end());
vec.erase(unique(vec.begin(), vec.end()), vec.end());
for (int i = 0; i < (int)boat.size(); i++) {
boat[i].l = lower_bound(vec.begin(), vec.end(), boat[i].l) - vec.begin() + 1;
boat[i].r = lower_bound(vec.begin(), vec.end(), boat[i].r) - vec.begin() + 1;
Max = max(Max, max(boat[i].l, boat[i].r));
}
return Max;
}
int main() {
// freopen("in.txt", "r", stdin);
int T, cs = 0;
scanf("%d", &T);
while (T--) {
int n;
scanf("%d", &n);
boat.clear();
for (int i = 1; i <= n; i++) {
int l, r, d, dir;
scanf("%d%d%d%d", &l, &r, &d, &dir);
double len = (d - (r - l) / 2.0), mid = (l + r) / 2.0;
if (len >= 0)
boat.push_back((Boat) {mid - len, mid + len, dir});
}
int m = discre(n);
lbit.init(m); rbit.init(m);
for (int i = 0; i < boat.size(); i++) {
if (boat[i].dir == -1) {
lbit.add(boat[i].l, 1);
lbit.add(boat[i].r + 1, -1);
}
else {
rbit.add(boat[i].l, 1);
rbit.add(boat[i].r + 1, -1);
}
}
int maxright = 0, ans = 0;
for (int i = 1; i <= m; i++) {
int leftcnt = lbit.sum(i);
maxright = max(maxright, rbit.sum(i));
ans = max(ans, leftcnt + maxright);
}
printf("Case #%d:\n%d\n", ++cs, ans);
}
return 0;
}