题意:
题目链接:http://acm.ecnu.edu.cn/problem/3329/
中文题。但是题意有点迷,在计算子集个数时,对于同一个子集只计算一次,如{1,2,3,3}中存在两个{1,2,3},但是计算的时候只算一个{1,2,3}。
思路:
dp,需要点优化,因为这里数的范围只有3500~4500,所以可以存这些数字的个数,注意到这里异或产生的质数最多只到8191。
dp[i][j]表示到第i个出现的数字异或和为j的个数有多少,状态转移为:
dp[i][j] = dp[i-1][j] * x + dp[i-1][j^num[i]] * y;
这里x和y分别是第i个数字出现的个数中偶数的个数和奇数的个数;
最后需要滚动数组。
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e5 + 10;
const LL MOD = 1e9 + 7;
bool prime[MAXN];
void init() {
for (int i = 2; i <= 8200; i++) prime[i] = true;
for (int i = 2; i <= 8200; i++) {
if (!prime[i]) continue;
for (int j = i * 2; j <= 8200; j += i)
prime[j] = false;
}
}
int cnt[MAXN];
LL dp[2][8200];
int main() {
//freopen("in.txt", "r", stdin);
init();
int n, x;
scanf("%d", &n);
vector <int> vec;
for (int i = 1; i <= n; i++) {
scanf("%d", &x);
cnt[x]++;
}
for (int i = 3500; i <= 4500; i++) {
if (cnt[i] > 0) vec.push_back(i);
}
n = vec.size();
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
LL x1 = (cnt[vec[i - 1]] + 1) / 2, x2 = cnt[vec[i - 1]] / 2 + 1;
for (int j = 0; j < 8192; j++) {
dp[i % 2][j] = ((dp[(i - 1) % 2][j] * x2) % MOD + (dp[(i - 1) % 2][j ^ vec[i - 1]] * x1) % MOD) % MOD;
}
}
LL ans = 0;
for (int i = 2; i < 8192; i++) {
if (prime[i]) ans = (ans + dp[n % 2][i]) % MOD;
}
printf("%I64d\n", ans);
//check(n);
return 0;
}