李宏毅机器学习(26)

Meta Learning-Gradient Descent as LSTM

观察我们之前学到MAML流程,发现这是一个类似RNN的过程。我们可以把参数看成RNN的Memory,而每次都会把一个训练数据放进NN中。
在这里插入图片描述

复习RNN

简短地复习一下RNN。RNN的优势就在于无论input再怎么长,参数量都不会增加。因此很适合处理input是一个sequence的情况。
在这里插入图片描述

但我们一般用到的是RNN的变形LSTM。一般说RNN就是指LSTM。
在这里插入图片描述
在这里插入图片描述

RNN和Gradient Descent

我们将RNN和Gradient Descent的式子写下来比较,发现 θ θ θ c t c^t ct的式子很像。那我们不如把 c t c^t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值