绝对值不等式

本文介绍了绝对值不等式的基本概念,包括绝对值的性质和推论,如三角不等式。通过例题和习题展示了如何利用这些性质解决相关证明问题,强调在高等数学中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

在微积分中,我们经常使用绝对值不等式描述变量的变化。因此,为了打好基础,首先学习绝对值不等式的内容对于高等数学的学习是很重要的。

一、绝对值的概念

根据中学学习的知识,数 x x x的绝对值记做 ∣ x ∣ \vert x\vert x,它的定义是 ∣ x ∣ = { x , x ⩾ 0 , − x , x < 0. \vert x\vert=\begin{cases} x,&\text{}x\geqslant 0,\\ -x,&\text{}x<0. \end{cases} x={ x,x,x0,x<0.

由此可知 ∣ x ∣ \vert x\vert x总是非负的,并且代表数轴上的点 x x x到原点的距离。

二、一些推论

对于 ∀ x ∈ R \forall x\in \mathbf R xR ∀ y ∈ R \forall y\in \mathbf R yR,我们有以下结论,不言自明:
(1) ∣ x ∣ = ∣ − x ∣ \vert x\vert=\vert -x\vert x=x

(2) ∣ x ∣ ⩾ 0 \vert x\vert\geqslant0 x0,当且仅当 x = 0 x=0 x=0时取等。

(3) ∣ x ∣ ⩾ x \vert x\vert\geqslant x xx, 当且仅当 x ⩾ 0 x\geqslant0 x0 时取等。

(4) ∣ x + y ∣ ≤ ∣ x ∣ + ∣ y ∣ \vert x+y\vert \le \vert x \vert+\vert y \vert x+yx+y,当且仅当 x y ⩾ 0 xy\geqslant0 xy0时取等。

另一种看法

一般来说,给定两个数 a a a b b b,数 ( a − b ) (a-b) ab的绝对值 ∣ a − b ∣ \vert a-b\vert

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值