- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
代码
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.models as models
import torch.nn.functional as F
import torch.nn as nn
import torch,torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type=‘cuda’)
import os,PIL,random,pathlib
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
data_dir = './data/p/015_licence_plate/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[3].split("_")[1].split(".")[0] for path in data_paths]
print(classeNames)
[‘川W9BR26’, ‘藏WP66B0’, ‘沪E264UD’, ‘津D8Z15T’, ‘浙E198UJ’…]
data_paths = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
plt.figure(figsize=(14,5))
plt.suptitle("数据示例",fontsize=15)
for i in range(18):
plt.subplot(3,6,i+1)
# plt.xticks([])
# plt.yticks([])
# plt.grid(False)
# 显示图片
images = plt.imread(data_paths_str[i])
plt.imshow(images)
plt.show()
import numpy as np
char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\
"豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]
number = [str(i) for i in range(0, 10)] # 0 到 9 的数字
alphabet = [chr(i) for