【深度学习实战】Pytorch实现车牌识别

代码

from torchvision.transforms import transforms
from torch.utils.data       import DataLoader
from torchvision            import datasets
import torchvision.models   as models
import torch.nn.functional  as F
import torch.nn             as nn
import torch,torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type=‘cuda’)

import os,PIL,random,pathlib
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

data_dir = './data/p/015_licence_plate/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[3].split("_")[1].split(".")[0] for path in data_paths]
print(classeNames)

[‘川W9BR26’, ‘藏WP66B0’, ‘沪E264UD’, ‘津D8Z15T’, ‘浙E198UJ’…]

data_paths     = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]

plt.figure(figsize=(14,5))
plt.suptitle("数据示例",fontsize=15)

for i in range(18):
    plt.subplot(3,6,i+1)
    # plt.xticks([])
    # plt.yticks([])
    # plt.grid(False)
    
    # 显示图片
    images = plt.imread(data_paths_str[i])
    plt.imshow(images)

plt.show()

在这里插入图片描述

import numpy as np

char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\
              "豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]

number   = [str(i) for i in range(0, 10)]    # 0 到 9 的数字
alphabet = [chr(i) for i in range(65, 91)]   # A 到 Z 的字母

char_set       = char_enum + number + alphabet
char_set_len   = len(char_set)
label_name_len = len(classeNames[0])

# 将字符串数字化
def text2vec(text):
    vector = np.zeros([label_name_len, char_set_len])
    for i, c in enumerate(text):
        idx = char_set.index(c)
        vector[i][idx] = 1.0
    return vector

all_labels = [text2vec(i) for i in classeNames]
import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
import torch.utils.data as data
from PIL import Image

class MyDataset(data.Dataset):
    def __init__(self, all_labels, data_paths_str, transform):
        self.img_labels = all_labels      # 获取标签信息
        self.img_dir    = data_paths_str  # 图像目录路径
        self.transform  = transform       # 目标转换函数

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, index):
        image    = Image.open(self.img_dir[index]).convert('RGB')#plt.imread(self.img_dir[index])  # 使用 torchvision.io.read_image 读取图像
        label    = self.img_labels[index]  # 获取图像对应的标签
        
        if self.transform:
            image = self.transform(image)
            
        return image, label  # 返回图像和标签
total_datadir = './data/p/015_licence_plate/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std =[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = MyDataset(all_labels, data_paths_str, train_transforms)
total_data

<main.MyDataset at 0x1dad1086640>

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_size,test_size

(10940, 2735)

train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=16,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=16,
                                          shuffle=True)

print("The number of images in a training set is: ", len(train_loader)*16)
print("The number of images in a test set is: ", len(test_loader)*16)
print("The number of batches per epoch is: ", len(train_loader))

The number of images in a training set is: 10944
The number of images in a test set is: 2736
The number of batches per epoch is: 684

for X, y in test_loader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]: torch.Size([16, 3, 224, 224])
Shape of y: torch.Size([16, 7, 69]) torch.float64

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, label_name_len*char_set_len)
        self.reshape = Reshape([label_name_len,char_set_len])

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)
        
        # 最终reshape
        x = self.reshape(x)

        return x
    
# 定义Reshape层
class Reshape(nn.Module):
    def __init__(self, shape):
        super(Reshape, self).__init__()
        self.shape = shape

    def forward(self, x):
        return x.view(x.size(0), *self.shape)

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

Network_bn(
(conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc1): Linear(in_features=60000, out_features=483, bias=True)
(reshape): Reshape()
)

import torchsummary

''' 显示网络结构 '''
torchsummary.summary(model, (3, 224, 224))
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
├─Conv2d: 1-1                            [-1, 12, 220, 220]        912
├─BatchNorm2d: 1-2                       [-1, 12, 220, 220]        24
├─Conv2d: 1-3                            [-1, 12, 216, 216]        3,612
├─BatchNorm2d: 1-4                       [-1, 12, 216, 216]        24
├─MaxPool2d: 1-5                         [-1, 12, 108, 108]        --
├─Conv2d: 1-6                            [-1, 24, 104, 104]        7,224
├─BatchNorm2d: 1-7                       [-1, 24, 104, 104]        48
├─Conv2d: 1-8                            [-1, 24, 100, 100]        14,424
├─BatchNorm2d: 1-9                       [-1, 24, 100, 100]        48
├─MaxPool2d: 1-10                        [-1, 24, 50, 50]          --
├─Linear: 1-11                           [-1, 483]                 28,980,483
├─Reshape: 1-12                          [-1, 7, 69]               --
==========================================================================================
Total params: 29,006,799
Trainable params: 29,006,799
Non-trainable params: 0
Total mult-adds (M): 462.38
==========================================================================================
Input size (MB): 0.57
Forward/backward pass size (MB): 25.03
Params size (MB): 110.65
Estimated Total Size (MB): 136.26
==========================================================================================
optimizer  = torch.optim.Adam(model.parameters(), 
                              lr=1e-4, 
                              weight_decay=0.0001)

loss_model = nn.CrossEntropyLoss()
from torch.autograd import Variable

def test(model, test_loader, loss_model):
    size = len(test_loader.dataset)
    num_batches = len(test_loader)
    
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in test_loader:
            X, y = X.to(device), y.to(device)
            pred = model(X)

            test_loss += loss_model(pred, y).item()
            
    test_loss /= num_batches

    print(f"Avg loss: {test_loss:>8f} \n")
    return correct,test_loss

def train(model,train_loader,loss_model,optimizer):
    model=model.to(device)
    model.train()
    
    for i, (images, labels) in enumerate(train_loader, 0): #0是标起始位置的值。

        images = Variable(images.to(device))
        labels = Variable(labels.to(device))

        optimizer.zero_grad()
        outputs = model(images)

        loss = loss_model(outputs, labels)
        loss.backward()
        optimizer.step()

        if i % 1000 == 0:    
            print('[%5d] loss: %.3f' % (i, loss))
test_acc_list  = []
test_loss_list = []
epochs = 30

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model,train_loader,loss_model,optimizer)
    test_acc,test_loss = test(model, test_loader, loss_model)
    test_acc_list.append(test_acc)
    test_loss_list.append(test_loss)
print("Done!")

Epoch 1

[ 0] loss: 0.213
Avg loss: 0.079603

Epoch 2

[ 0] loss: 0.079
Avg loss: 0.060202

Epoch 3

[ 0] loss: 0.028
Avg loss: 0.044577

Epoch 4

[ 0] loss: 0.017
Avg loss: 0.046019

Epoch 5

[ 0] loss: 0.031
Avg loss: 0.039825

Epoch 6

[ 0] loss: 0.020
Avg loss: 0.037831

Epoch 7

[ 0] loss: 0.036
Avg loss: 0.038155

Epoch 8

[ 0] loss: 0.019
Avg loss: 0.035109

Epoch 9

[ 0] loss: 0.025
Avg loss: 0.034304

Epoch 10

[ 0] loss: 0.013
Avg loss: 0.035060

Epoch 11

[ 0] loss: 0.008
Avg loss: 0.032514

Epoch 12

[ 0] loss: 0.016
Avg loss: 0.032926

Epoch 13

[ 0] loss: 0.026
Avg loss: 0.030407

Epoch 14

[ 0] loss: 0.027
Avg loss: 0.029784

Epoch 15

[ 0] loss: 0.033
Avg loss: 0.030229

Epoch 16

[ 0] loss: 0.026
Avg loss: 0.029391

Epoch 17

[ 0] loss: 0.022
Avg loss: 0.029136

Epoch 18

[ 0] loss: 0.019
Avg loss: 0.028480

Epoch 19

[ 0] loss: 0.013
Avg loss: 0.027387

Epoch 20

[ 0] loss: 0.012
Avg loss: 0.027484

Epoch 21

[ 0] loss: 0.028
Avg loss: 0.026955

Epoch 22

[ 0] loss: 0.017
Avg loss: 0.027299

Epoch 23

[ 0] loss: 0.015
Avg loss: 0.027710

Epoch 24

[ 0] loss: 0.013
Avg loss: 0.027263

Epoch 25

[ 0] loss: 0.013
Avg loss: 0.025654

Epoch 26

[ 0] loss: 0.024
Avg loss: 0.026460

Epoch 27

[ 0] loss: 0.012
Avg loss: 0.026072

Epoch 28

[ 0] loss: 0.009
Avg loss: 0.025800

Epoch 29

[ 0] loss: 0.024
Avg loss: 0.026158

Epoch 30

[ 0] loss: 0.025
Avg loss: 0.026188

Done!


import numpy as np
import matplotlib.pyplot as plt

x = [i for i in range(1,31)]

plt.plot(x, test_loss_list, label="Loss", alpha=0.8)

plt.xlabel("Epoch")
plt.ylabel("Loss")

plt.legend()    
plt.show()

在这里插入图片描述

自定义加载数据集

自定义加载数据集步骤概述
在深度学习中,自定义加载数据集是一个常见的任务,因为很多实际项目中的数据集并不是标准的格式,或者你可能需要对数据进行一些预处理。

  1. 理解数据集
    确定数据集的结构(例如,CSV文件、图片文件夹、数据库等)。
    了解每个数据点的格式和包含的信息。
    确定是否有标签(监督学习)或仅有特征(非监督学习)。
    2.定义数据类
    在Python中,通常使用torch.utils.data.Dataset(PyTorch中)或类似的类(TensorFlow等)来定义你的数据集。
    在这个类中,你需要实现__len__和__getitem__方法。
    __len__方法返回数据集的长度,
    __getitem__方法允许你通过索引访问数据集中的每个数据点。getitem接收一个index,然后返回图片数据和标签,这个index通常指的是一个list的index,这个list的每个元素就包含了图片数据的路径和标签信息。
    制作list,通常的方法是将图片的路径和标签信息存储在一个txt中,然后从该txt中读取。 那么读取自己数据的基本流程就是:

制作存储了图片的路径和标签信息的txt;
将这些信息转化为list,该list每一个元素对应一个样本;
通过getitem函数,读取数据和标签,并返回数据和标签;
3.数据加载
在__getitem__方法中,需要编写代码来加载和预处理数据。包括读取文件、解析数据、应用转换(如缩放、归一化、裁剪等)等。

4.数据预处理
在加载数据后,可能需要进行一些预处理步骤,如数据增强(对于图像数据)、特征工程等。
这些步骤可以在__getitem__方法内部实现,也可以作为单独的函数或类。

5.批处理
使用torch.utils.data.DataLoader来加载和批处理数据。这个类允许指定批大小、是否打乱数据、使用多线程加载等。
DataLoader会调用你定义的Dataset类的__getitem__方法来获取数据,并自动进行批处理。

6.测试和调试
编写代码来测试你的数据集类,确保它能够正确地加载和预处理数据。
使用一小部分数据来测试你的模型,以确保数据加载和预处理没有问题。

7.优化和扩展
如果数据加载速度很慢,考虑使用更快的存储解决方案(如SSD)或优化你的数据加载和预处理代码。
如果你的数据集很大且不能全部加载到内存中,考虑使用流式加载或分布式加载。

  • 7
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值