第P10周:Pytorch实现车牌识别

⭐本文为365天深度学习训练营的学习记录博客
⭐原作者为K同学啊

基础配置

🏡 我的环境:

● 语言环境:Python3.8
● 编译器:jupyter notebook
● 深度学习环境:Pytorch

一、导入数据

from torchvision.transforms import transforms
from torch.utils.data       import DataLoader
from torchvision            import datasets
import torchvision.models   as models
import torch.nn.functional  as F
import torch.nn             as nn
import torch,torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

输出:

device(type='cpu')

1.获取类别名

import os,PIL,random,pathlib
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

data_dir = './015_licence_plate/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1].split("_")[1].split(".")[0] for path in data_paths]
print(classeNames)

输出:

['川W9BR26', '藏WP66B0', '沪E264UD', '津D8Z15T', '浙E198UJ', '陕Z813VB', '甘G24298', '青SN18Q3', '云HZR899', '辽G46Z9R', '湘G0H422', '蒙D35P2J', '冀Z4K30A', '青Q31F3Y', '京X3U68P', '粤P6W0T1', '浙LD9F20', '黑AQ8U79', '津T0B1L3', '琼D0DK01', '渝V8X77K', '陕H4M02X', '沪K8W7S0', '津L612CY', '琼U2E68N', '鄂YDK772', '赣G3B80M', '陕B4H8M5', '甘J9R5K1', '贵UB312U', '浙R6PA34', '豫P21V72', '冀K3DD99', '黑DU092M', '川CQ816G', '晋N678PK', '川T65HK2', '闽FD24Q5', '桂X2R99V', '皖ZX3N01', '晋AL98Q2', '皖S9Q7H7', '川Q802LX', '琼F21DU3', '浙MZB988', '粤C035ZT', '津T127WB', '黑J92YL9', '津L93B1R', '贵R86A0C', '川C6W88E', '川STQ089', '沪DFS269', '赣K6R6S7', '新CXX059', '藏E6E0J5'....
data_paths     = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
data_paths_str

输出:

['015_licence_plate\\000000000_川W9BR26.jpg',
 '015_licence_plate\\000000000_藏WP66B0.jpg',
 '015_licence_plate\\000000001_沪E264UD.jpg',
 '015_licence_plate\\000000001_津D8Z15T.jpg',
 '015_licence_plate\\000000002_浙E198UJ.jpg',
 '015_licence_plate\\000000002_陕Z813VB.jpg',
 '015_licence_plate\\000000003_甘G24298.jpg',
 '015_licence_plate\\000000003_青SN18Q3.jpg',
 '015_licence_plate\\000000004_云HZR899.jpg',
 '015_licence_plate\\000000004_辽G46Z9R.jpg',
 '015_licence_plate\\000000005_湘G0H422.jpg',
 '015_licence_plate\\000000005_蒙D35P2J.jpg',
 '015_licence_plate\\000000006_冀Z4K30A.jpg',
 '015_licence_plate\\000000006_青Q31F3Y.jpg',
 '015_licence_plate\\000000007_京X3U68P.jpg',
 '015_licence_plate\\000000007_粤P6W0T1.jpg',
 '015_licence_plate\\000000008_浙LD9F20.jpg'....

2.数据可视化

plt.figure(figsize=(14,5))
plt.suptitle("数据示例",fontsize=15)

for i in range(18):
    plt.subplot(3,6,i+1)
    # plt.xticks([])
    # plt.yticks([])
    # plt.grid(False)
    
    # 显示图片
    images = plt.imread(data_paths_str[i])
    plt.imshow(images)

plt.show()

在这里插入图片描述

3.标签数字化

import numpy as np

char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\
              "豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]

number   = [str(i) for i in range(0, 10)]    # 0 到 9 的数字
alphabet = [chr(i) for i in range(65, 91)]   # A 到 Z 的字母

char_set       = char_enum + number + alphabet
char_set_len   = len(char_set)
label_name_len = len(classeNames[0])

# 将字符串数字化
def text2vec(text):
    vector = np.zeros([label_name_len, char_set_len])
    for i, c in enumerate(text):
        idx = char_set.index(c)
        vector[i][idx] = 1.0
    return vector

all_labels = [text2vec(i) for i in classeNames]

4.加载数据文件

import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
import torch.utils.data as data
from PIL import Image

class MyDataset(data.Dataset):
    def __init__(self, all_labels, data_paths_str, transform):
        self.img_labels = all_labels      # 获取标签信息
        self.img_dir    = data_paths_str  # 图像目录路径
        self.transform  = transform       # 目标转换函数

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, index):
        image    = Image.open(self.img_dir[index]).convert('RGB')#plt.imread(self.img_dir[index])  # 使用 torchvision.io.read_image 读取图像
        label    = self.img_labels[index]  # 获取图像对应的标签
        
        if self.transform:
            image = self.transform(image)
            
        return image, label  # 返回图像和标签
total_datadir = './03_traffic_sign/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std =[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = MyDataset(all_labels, data_paths_str, train_transforms)
total_data

5.划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_size,test_size

输出:

(10940, 2735)
train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=16,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=16,
                                          shuffle=True)

print("The number of images in a training set is: ", len(train_loader)*16)
print("The number of images in a test set is: ", len(test_loader)*16)
print("The number of batches per epoch is: ", len(train_loader))

输出:

The number of images in a training set is:  10944
The number of images in a test set is:  2736
The number of batches per epoch is:  684
for X, y in test_loader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出:

Shape of X [N, C, H, W]:  torch.Size([16, 3, 224, 224])
Shape of y:  torch.Size([16, 7, 69]) torch.float64

二、自建模型

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, label_name_len*char_set_len)
        self.reshape = Reshape([label_name_len,char_set_len])

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)
        
        # 最终reshape
        x = self.reshape(x)

        return x
    
# 定义Reshape层
class Reshape(nn.Module):
    def __init__(self, shape):
        super(Reshape, self).__init__()
        self.shape = shape

    def forward(self, x):
        return x.view(x.size(0), *self.shape)

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

输出:

Using cpu device
Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=483, bias=True)
  (reshape): Reshape()
)

三、模型训练

1.优化器与损失函数

optimizer  = torch.optim.Adam(model.parameters(), 
                              lr=1e-4, 
                              weight_decay=0.0001)

loss_model = nn.CrossEntropyLoss()
from torch.autograd import Variable

def test(model, test_loader, loss_model):
    size = len(test_loader.dataset)
    num_batches = len(test_loader)
    
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in test_loader:
            X, y = X.to(device), y.to(device)
            pred = model(X)

            test_loss += loss_model(pred, y).item()
            pred=pred.argmax(2)
            _,predicted = torch.max(y,2)
            correct += (pred == predicted).type(torch.float).sum().item()/(y.size(0)*y.size(1))
    test_loss /= num_batches
    correct  /= num_batches
    print(f"Avg loss: {test_loss:>8f},accuracy:{correct:>0.8f}%\n")
    return correct,test_loss

def train(model,train_loader,loss_model,optimizer):
    model=model.to(device)
    model.train()
    
    for i, (images, labels) in enumerate(train_loader, 0): #0是标起始位置的值。

        images = Variable(images.to(device))
        labels = Variable(labels.to(device))

        optimizer.zero_grad()
        outputs = model(images)

        loss = loss_model(outputs, labels)
        loss.backward()
        optimizer.step()

        if i % 1000 == 0:    
            print('[%5d] loss: %.3f' % (i, loss))

2.模型的训练

test_acc_list  = []
test_loss_list = []
epochs = 30

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model,train_loader,loss_model,optimizer)
    test_acc,test_loss = test(model, test_loader, loss_model)
    test_acc_list.append(test_acc)
    test_loss_list.append(test_loss)
print("Done!")
Epoch 1
-------------------------------
[    0] loss: 0.211
[  100] loss: 0.163
[  200] loss: 0.141
[  300] loss: 0.125
[  400] loss: 0.090
[  500] loss: 0.090
[  600] loss: 0.097
Avg loss: 0.072495, accuracy:0.312023
 
...............
 
Epoch 30
-------------------------------
[    0] loss: 0.016
[  100] loss: 0.008
[  200] loss: 0.017
[  300] loss: 0.006
[  400] loss: 0.016
[  500] loss: 0.011
[  600] loss: 0.017
Avg loss: 0.027576, accuracy:0.623085
 
Done!

四、结果分析

import numpy as np
import matplotlib.pyplot as plt

x = [i for i in range(1,31)]

plt.plot(x, test_loss_list, label="Loss", alpha=0.8)

plt.xlabel("Epoch")
plt.ylabel("Loss")

plt.legend()    
plt.show()

在这里插入图片描述

五、个人总结

本次实战,掌握了自己搭建Mydataset的方法,深入理解了准确率计算的处理问题。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值