cifar10_input.py
"""Routine for decoding the CIFAR-10 binary file format."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Process images of this size. Note that this differs from the original CIFAR
# image size of 32 x 32. If one alters this number, then the entire model
# architecture will change and any model would need to be retrained.
# 原图像的尺度为32*32,但根据常识,信息部分通常位于图像的中央,
# 这里定义了以中心裁剪后图像的尺寸
IMAGE_SIZE = 24
# Global constants describing the CIFAR-10 data set.
NUM_CLASSES = 10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000
def read_cifar10(filename_queue):
"""Reads and parses examples from CIFAR10 data files.
Recommendation: if you want N-way read parallelism, call this function
N times. This will give you N independent Readers reading different
files & positions within those files, which will give better mixing of
examples.
Args:
filename_queue: A queue of strings with the filenames to read from.
Returns:
An object representing a single example, with the following fields:
height: number of rows in the result (32)
width: number of columns in the result (32)
depth: number of color channels in the result (3)
key: a scalar string Tensor describing the filename & record number
for this example.
label: an int32 Tensor with the label in the range 0..9.
uint8image: a [height, width, depth] uint8 Tensor with the image data
"""
# 定义一个空的类对象,类似于c语言里面的结构体定义
class CIFAR10Record(object):
pass
result = CIFAR10Record()
# Dimensions of the images in the CIFAR-10 dataset.
# See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
# input format.
label_bytes = 1 # 2 for CIFAR-100
result.height = 32
result.width = 32
result.depth = 3
#一张图像占用空间
image_bytes = result.height * result.width * result.depth
# Every record consists of a label followed by the image, with a
# fixed number of bytes for each.
#数据集中一条记录的组成
record_bytes = label_bytes + image_bytes
# Read a record, getting filenames from the filename_queue. No
# header or footer in the CIFAR-10 format, so we leave header_bytes
# and footer_bytes at their default of 0.
# 定义一个Reader,它每次能从文件中读取固定字节数
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
# 返回从filename_queue中读取的(key, value)对,key和value都是字符串类型的tensor,并且当队列中的某一个文件读完成时,该文件名会dequeue
result.key, value = reader.read(filename_queue)
# Convert from a string to a vector of uint8 that is record_bytes long.
# 解码操作可以看作读二进制文件,把字符串中的字节转换为数值向量,每一个数值占用一个字节,在[0, 255]区间内,因此out_type要取uint8类型
record_bytes = tf.decode_raw(value, tf.uint8)#将字符串Tensor转化成uint8类型
# The first bytes represent the label, which we convert from uint8->int32.
# 从一维tensor对象中截取一个slice,类似于从一维向量中筛选子向量,因为record_bytes中包含了label和feature,故要对向量类型tensor进行'parse'操作
result.label = tf.cast(
tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)#分别表示待截取片段的起点和长度,并且把标签由之前的uint8转变成int32数据类型
# The remaining bytes after the label represent the image, which we reshape.
# from [depth * height * width] to [depth, height, width].
#提取每条记录中的图像数据为result.depth, result.height, result.width
depth_major = tf.reshape(
tf.strided_slice(record_bytes, [label_bytes],
[label_bytes + image_bytes]),
[result.depth, result.height, result.width])
# Convert from [depth, height, width] to [height, width, depth].
#改变为height, width, depth
result.uint8image = tf.transpose(depth_major, [1, 2, 0])
return result
# 构建一个排列后的一组图片和分类
def _generate_image_and_label_batch(image, label, min_queue_examples,
batch_size, shuffle):
"""Construct a queued batch of images and labels.
Args:
image: 3-D Tensor of [height, width, 3] of type.float32.
label: 1-D Tensor of type.int32
min_queue_examples: int32, minimum number of samples to retain
in the queue that provides of batches of examples.
batch_size: Number of images per batch.
shuffle: boolean indicating whether to use a shuffling queue.
Returns:
images: Images. 4D tensor of [batch_size, height, width, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
# Create a queue that shuffles the examples, and then
# read 'batch_size' images + labels from the example queue.
#线程数
num_preprocess_threads = 16
#布尔指示是否使用一个shuffling队列
if shuffle:
images, label_batch = tf.train.shuffle_batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size,
min_after_dequeue=min_queue_examples)
else:
#tf.train.batch(tensors, batch_size, num_threads=1, capacity=32,
# enqueue_many=False, shapes=None, dynamic_pad=False,
# allow_smaller_final_batch=False, shared_name=None, name=None)
#这里是用队列实现,已经默认使用enqueue_runner将enqueue_runner加入到Graph'senqueue_runner集合中
#其默认enqueue_many=False时,输入的tensor为一个样本【x,y,z】,输出为Tensor的一批样本
#capacity:队列中允许最大元素个数
images, label_batch = tf.train.batch(
[image, label],
batch_size=batch_size,
num_threads=num_preprocess_threads,
capacity=min_queue_examples + 3 * batch_size)
# Display the training images in the visualizer.
#将训练图片可视化,可拱直接检查图片正误
tf.summary.image('images', images)
return images, tf.reshape(label_batch, [batch_size])
# 为CIFAR评价构建输入
# data_dir路径
# batch_size一个组的大小
def distorted_inputs(data_dir, batch_size):
"""Construct distorted input for CIFAR training using the Reader ops.
Args:
data_dir: Path to the CIFAR-10 data directory.
batch_size: Number of images per batch.
Returns:
images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
labels: Labels. 1D tensor of [batch_size] size.
"""
filenames = [os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in xrange(1, 6)]
for f in filenames:
if not tf.gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
# Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames)
# Read examples from files in the filename queue.
read_input = read_cifar10(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
height = IMAGE_SIZE
width = IMAGE_SIZE
# Image processing for training the network. Note the many random
# distortions applied to the image.
# Randomly crop a [height, width] section of the image.
distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
# Randomly flip the image horizontally.
distorted_image = tf.image.random_flip_left_right(distorted_image)
# Because these operations are not commutative, consider randomizing
# the order their operation.
# NOTE: since per_image_standardization zeros the mean and makes
# the stddev unit, this likely has no effect see tensorflow#1458.
distorted_image = tf.image.random_brightness(distorted_image,
max_delta=63)
distorted_image = tf.image.random_contrast(distorted_image,
lower