# 线性回归-机器学习

# coding=utf-8
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# 正规方程预测房价
def myliner():
"""
这是一个问题
:return:
"""
print("-"*100)

# 获取数据

# 数据分割
x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)

# 数据标准化处理 -> 目标值与特征值一起标准化

# print(y_train, y_test)
std_x = StandardScaler()
x_train = std_x.fit_transform(x_train)
x_test = std_x.transform(x_test)

std_y = StandardScaler()
y_train = std_y.fit_transform(y_train.reshape(-1, 1))
y_test = std_y.transform(y_test.reshape(-1, 1))
# print("-"*100)
# print(y_train, y_test)

# 开始学习
lr = LinearRegression()
lr.fit(x_train, y_train)

print(lr.coef_)

# 预测结果
y_predict = lr.predict(x_test)
print("预测结果: ", y_predict)

# 梯度下降预测
sgd = SGDRegressor()

sgd.fit(x_train, y_train)

print(sgd.coef_)

y_predict2 = sgd.predict(x_test)

print("预测结果2:", y_predict2)

print("-"*100)

# 岭回归
rd = Ridge(alpha=1.0)
rd.fit(x_train, y_train)

print(rd.coef_)

print(rd.predict(x_test))

return None

# 最小二乘法?
if __name__ == "__main__":
"""
线性回归:目标值是连续的
"""
myliner()

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客