Tableau 与 Power BI的比较

本文对比了Tableau和PowerBI在视觉呈现、数据准备、数据建模、生态系统、产品与服务费用及安全控制六个方面的优劣。Tableau在视觉呈现和易用性方面胜出,而PowerBI在数据准备、数据建模和生态系统方面表现更佳。两者在安全控制方面势均力敌。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先来看一张图,这张图显示了从2011年到2020年Tableau 、Power BI 、帆软 、Cognos 这4个关键词在度娘中被检索得次数的变化。可以看到tableau得检索率还是蛮高的,从一定程度上能反映出Tableau近来已经占到了4种可视化工具的42%以上的份额,power BI紧随其后,和帆软不相上下。
在这里插入图片描述

第一回合 视觉呈现和易用性

结论:Tableau胜出

Tableau被誉为“数据挖掘时代的梵高”,用Tableau做出来的报表从美学视角上看效果很不错。Tableau的报表设计理论是有很深厚的学术理论做背书的,无论是色彩搭配还是图形精致度都是首屈一指的出众,用Tableau做出的图表效果都很精美。

Tableau产品在易用性方面也是可圈可点的,通过界面操作即可生产多种简易度量,例如创建均线、中位线、趋势线等,创建过程无须输公式,非常直观流程,在图形控制方面也是十分灵活的,使其商业分析更具洞察力。

相比之下,Power BI有点像数学统计功底强的IT理科生,使用Power BI做出来的图表中规中矩,缺少一种惊艳的感觉。Power BI虽然计算功能强大,但许多场景需要写公式来实现,在易用性方面略微逊色。

所以,在视觉与易用性方面,Tableau明显胜出了。值得一提的是,2018年,联合国宣布选择Tableau作为其专用的数据分析产品,估计其图表效果为其加分不少。

第二回合 数据准备

结论:Power BI胜出

在数据准备工具方面,Power BI的功能非常全面。微软设计了一套M语言专门支持数据准备。通过Power BI的IDE(集成开发环境)界面,分析人员可以轻易完成许多数据清洗任务,不需要写一行代码。高级用户甚至还可以通过直接编写M代码来完成更为复杂的数据清洗任务,M语言的学习难易度与VBA相近。

Tableau数据清洗功能发展较晚,直到2018年5月,Tableau才推出数据清洗工具Tableauprep。Tableau prep的功能也有独到之处,最大的亮点是可以智能改正拼写错误。即使如此,Tableau在自动化方面和Power BI仍有一段明显的差距,而且其IDE界

### Tableau Power BI 数据可视化工具的功能使用对比 #### 功能特性 Tableau 提供了直观的拖放界面,使得创建复杂的交互式仪表板变得简单快捷[^1]。相比之下,Power BI 同样拥有易于使用的图形化设计环境,支持通过简单的操作实现数据连接、转换展示。 两者都具备强大的数据分析能力,但在某些方面各有侧重: - **集成度**:Power BI 更加紧密地集成了 Microsoft 生态系统中的其他产品服务,例如 Excel、SharePoint Azure 等;而 Tableau 则提供了广泛的第三方应用程序接口(API),允许更灵活的数据源接入方式。 - **性能表现**:对于大规模数据集处理而言,Tableau 的内存优化技术使其能够在保持良好响应速度的同时加载大量记录。不过,在面对实时流式传输场景时,Power BI 凭借其内置的支持机制可能更具优势。 #### 使用体验 在用户体验上,两个平台均致力于简化用户的开发流程并提升工作效率。然而具体到细节之处仍存在差异: - **学习曲线**:初次接触BI工具的新手可能会觉得 Superset 比起 Tableau 来说更容易入手。同样道理也适用于 Power BI —— 它的设计理念旨在让任何人都能快速掌握基本功能,并逐步深入探索高级特性的应用价值。 - **定制灵活性**:尽管二者都能让用户自定义视觉效果以及调整布局样式,但 Tableau 在这方面给予了更大的自由度,尤其是在图表种类的选择性参数配置选项的数量级上更为突出。 ```python import pandas as pd from tableauhyperapi import HyperProcess, Connection, Telemetry, CreateMode, TableName # 连接至Hyper数据库文件(.hyper) with HyperProcess(telemetry=Telemetry.DO_NOT_SEND_USAGE_DATA_TO_TABLEAU) as hyper: with Connection(endpoint=hyper.endpoint, database="example.hyper") as connection: result = connection.execute_scalar_query(query=f"SELECT COUNT(*) FROM {TableName('public', 'data')}") print(f"There are {result} rows in the table.") ``` ```powershell Import-PowerBIRootFolder -Path "C:\MyReports" Set-PowerBITableStyle -Name "SalesData" -Theme Light Export-PowerBIReport -Path "C:\MyReports\SalesAnalysis.pbix" -Format PDF -OutputFile "C:\Exports\Sales.pdf" ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值