【数据分析】利用机器学习算法进行预测分析(六):长短时记忆网络(LSTM)
于 2021-01-22 22:29:55 首次发布
本文介绍了长短时记忆网络(LSTM)在时间序列预测中的应用,特别是在股价预测中的实例。LSTM作为一种特殊类型的循环神经网络,解决了传统RNN的梯度消失和爆炸问题,擅长处理时间序列中的长期依赖。通过与移动平均、线性回归等算法对比,LSTM在预测股票收盘价时表现出较高的准确性。文章提供了数据集和代码资源,并讨论了预测模型的参数调整以及预测的局限性,强调了针对不同问题选择合适预测算法的重要性。
摘要由CSDN通过智能技术生成