本系列文章包含: 基于 NLP 的电影评论情感分析模型比较 情感分析(一):基于 NLTK 的 Naive Bayes 实现 情感分析(二):基于 scikit-learn 的 Naive Bayes 实现 情感分析(三):基于 Word2Vec 的 LSTM 实现 情感分析(四):基于 Tokenizer 和 Word2Vec 的 CNN 实现 情感分析(五):基于 BERT 实现 情感分析(二):基于 scikit-learn 的 Naive Bayes 实现 1.导入包 2.导入数据 3.数据预处理 4.交叉验证模型 5.评估模型 6.优化模型 6.1 使用 TF-IDF 构建词向量 6.2 使用 ComplementNB 模型 6.3 清除 HTML 标签 7.获取词频分布的方法(补充)</