题目
给你一个整数 n ,请你在无限的整数序列 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …] 中找出并返回第 n 位上的数字。
- 示例 1:
输入:
n = 3
输出:3
- 示例 2:
输入:
n = 11
输出:0
解释:第 11 位数字在序列 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, … 里是 0 ,它是 10 的一部分。
- 提示:
节点总数 <= 10000
解法
- 由题目可知,一位数占用一位,两位数占用俩位,以此类推,我们需要得知 n 是在几位数上的,所以用 n 减去前面位数占用的位数的总和(一位数1-9共9位,二位数10-99共90×2=180位…)
- 确定数字所在位数之后,确定 n 所在的实际数字究竟是哪个
- 确定实际位数后,最后一步是确定所找数字在实际数字的第几位
class Solution {
public:
int findNthDigit(int n) {
int numDigits = 1; // 初始化数字位数
long long int numCount = 9; // 当前数字位数所包含的数字个数
// 确定给定数字所在的位数
while (n - numCount * numDigits > 0) {
n -= numCount * numDigits;
numDigits++;
numCount *= 10;
}
// 确定实际数字
int num = pow(10, numDigits - 1) + (n - 1) / numDigits;
// 确定所找数字的位数
int digitIndex = (n - 1) % numDigits;
// 将数字转换为字符串并获取指定位上的数字
std::string numStr = std::to_string(num);
return numStr[digitIndex] - '0';
}
};