Batch_size Iteration 和Epoch的关系(附示例)

Batch_size是每次训练处理的样本数量,影响训练速度和硬件需求;一个Iteration是使用Batch_size训练一次;Epoch是所有样本遍历一次。例如,8000张图片训练,batch_size设为8,40个epoch,每个epoch需迭代10000次。最大迭代次数为train_spe*epoch,如10000*50=500,000次。
摘要由CSDN通过智能技术生成

Batch_size

Batch_size的大小表示一次同时处理样本的数量

数值越大处理速度越快,对计算机要求越高

Iteration 

“迭代”

一个Iteration 等于使用Batch_size个样本训练一次

Epoch

“时期”

一个Epoch等于所有训练样本num的一个正向传递和一个反向传递

示例

总共有num=8000张图片需要训练,受计算机限制batch_size设置为8,期望运行40个epoch

num=80000
bn=8
epoch=50

那么{\color{Blue} 1epoch=\frac{num}{bn_{-}size } =10000 iterations},训练一个epoch需要迭代10,000次

扩展:

train_spe=1 epoch=10000 iterations

最大迭代次数max_iters=train_spe*eopch=10000*50=500,000次

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值