batchsize、iteration、epoch之间的关系

本文解释了在深度学习中,批次大小(batchsize)、迭代次数(iteration)和一个完整周期(epoch)的关系,通过实例说明了它们如何影响训练过程。每个epoch使用整个训练集,而一个iteration则是使用一个batch进行训练,适合初学者参考和复习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

batchsize、iteration、epoch之间的关系

有的时候总是会弄错batchsize、iteration、epoch之间的关系,现在终于明白了。
1、batchsize是批次大小,假如取batchsize=24,则表示每次训练时在训练集中取24个训练样本进行训练。
2、iteration是迭代次数,1个iteration就等于一次使用24(batchsize大小)个样本进行训练。
3、epoch,1个epoch就等于一次使用训练集中全部样本训练一次。
如果训练样本为1000,batchsize=24,则训练一个完整的样本集需要1个epoch,需要迭代50(1000/24=50)次。

如有疑问,欢迎大家一起讨论

主要是记录一下自己平时遇到的问题,和大家分享一下
如有侵犯,请联系我

点个赞支持一下吧

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值