设备指纹:用户登录网页、APP时,后台记录的登录设备的“指纹”,能够准确识别该设备是否曾经登录过。设备指纹的核心是使用设备的唯一识别码。使用该唯一识别码,可以追踪用户登录网页、APP的行为特征,从而达到检测异常行为及欺诈行为的目的。
PC时代,一般使用IP地址、cookie等信息标识设备的唯一性,记录用户使用设备的行为特征。而随着智能手机的普及,传统的设备指纹无法精准标识移动设备,故出现了多种针对移动设备的设备指纹技术。
1
设备指纹的分类
设备指纹分为主动式设备指纹、被动式设备指纹。
分类
定义
优缺点
主动式
在Web、APP嵌入JS或SDK,主动收集与设备相关的信息和特征。一般是公司内部研发自己加工
在不同浏览器、Web和APP之间,会生成不同的设备指纹ID
被动式
从数据报文的OSI七层协议中,提取出该终端设备的OS、协议栈和网络状态相关的特征集,并结合机器学习算法以标识和追踪具体的终端设备。一般是第三方厂商帮忙部署
可解决不同浏览器、Web和APP之间的设备关联问题,但需要使用复杂的机器学习算法进行设备识别,占用处理资源较多、响应时延
2
设备相关变量
本篇我们重点了解主动式设备指纹,先来看看贷款申请流程(相关页面):注册–>登录–>OCR–>活体检测–>个人资料填写–>绑卡–>授信提交–>提现。
在以上的每个页面,均可让内部研发做相应的埋点,从而获取到不同的设备指纹。对反欺诈比较有意义的包括注册设备指纹、登录设备指纹、授信设备指纹、提现设备指纹,一般建议在这几个页面一定要做相应的设备埋点。
进行设备埋点后,除了获取设备唯一码,还可以获取的设备相关的其他变量,下图为大家罗列的是一些常用的设备信息相关变量:
不管是主动式设备指纹,还是被动式设备指纹,均是基于以上变量加工,区别在于算法不同。一个好的设备指纹,具有防篡改功能。黑产可以使用改机软件修改设备参数,如修改了IMEI,但手机内存或CPU未修改,但设备指纹ID不会发生变化。
3
设备指纹的应用
基于以上设备相关变量,可根据黑产的欺诈场景开发多种策略,以下通过两个欺诈场景举例说明:
场景一:黑产发现某贷款平台拉新活动的漏洞,进行批量注册,未修改设备参数。
防范策略:平台通过短期内多人共用设备ID,判断遭受黑产攻击,进而在授信或提现环节阻断其交易。同时,亦可修改拉新活动的策略,避免损失扩大。
场景二:中介远程操作帮客户申请贷款,注册、登录、OCR及活体检测环节由客户本人操作,但资料填写及最终提交授信由中介操作。
防范策略:通过中介的操作行为,可判断在同一次授信过程中,有两次登录APP行为,且有两个设备指纹ID,最终确定用户此次授信非本人申请的嫌疑很大。
通过以上两个欺诈场景,可以看出如何应用设备指纹及设备相关变量,需要根据不同的欺诈场景制定针对性的防范性策略,这样才能精准识别欺诈行为,避免误杀。
最后,留给大家两个问题思考,欢迎来{金科应用研院}讨论:
1.黑产会通过改机软件或模拟器修改设备参数、定位、IP等信息,如设备参数被修改,设备指纹ID发生变化,是否还能防住其欺诈行为?
2.PC端或H5端是否有足够的设备信息开发出精准的设备指纹ID?