题意:(题目在最后)
给你一个整数n,让你求满足b^p=x的最大的p,例如72=2^3*3^2;结果是1;因为只有72^1=72;
216=2^3*3^3=6^3,结果是3;
利用 唯一分解定理x=p1^e1*p2^e2*......pi^ei,存下每一个指数,再求最大公约数,得到答案;
注意:两个点
1: n有可能是负的,这时候先把n变成正数求,因为只有b^奇数才可能为负数,(n=-4时,-2^2=4,显然不可能=n)
所以要把所有的指数不断除2转化成奇数(n=-64时,-2^6=(-2^2)^3=-4^3,结果是3)
2:素数打表用long long ,不然平方时会炸。
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=100005;
int tot=0,d,a[100];
ll ans[N/10];
bool vis[N];
void Prime()
{
memset(vis,true,sizeof(vis));
for(int i=2;i<N;i++)
{
if(vis[i]) ans[++tot]=i;
for(int j=1;(j<=tot)&&(i*ans[j]<N);j++)
{
vis[i*ans[j]]=false;
if(i%ans[j]==0) break;
}
}
}
int gcd(int a,int b) { return b?gcd(b,a%b):a;}
void sbreak(ll x)
{
d=0;
memset(a,0,sizeof(a));
for(int i=1;ans[i]*ans[i]<=x;i++)
{
int cnt=0;
if(x%ans[i]==0) d++;
while(x%ans[i]==0)
{
x/=ans[i];
a[d]=++cnt;
}
}
if(x>1) {d=1;a[1]=1;}
}
int main()
{
Prime();
int t,cas=0;
scanf("%d",&t);
while(t--)
{
ll x;
bool tag=false;
scanf("%lld",&x);
if(x<0) {x=-x;tag=true;}
sbreak(x);
int t=a[1];
if(tag)
{
for(int i=1;i<=d;i++)
{
while(a[i]%2==0)
a[i]/=2;
t=gcd(t,a[i]);
}
}
else
for(int i=1;i<=d;i++)
t=gcd(t,a[i]);
printf("Case %d: %d\n",++cas,t);
}
return 0;
}
Dr. Mob has just discovered a Deathly Bacteria. He named it RC-01. RC-01 has a very strange reproduction system. RC-01 lives exactly x days. Now RC-01 produces exactly p new deadly Bacteria where x = bp (where b, p are integers). More generally, x is a perfect pth power. Given the lifetime x of a mother RC-01 you are to determine the maximum number of new RC-01 which can be produced by the mother RC-01.
Input starts with an integer T (≤ 50), denoting the number of test cases.
Each case starts with a line containing an integer x. You can assume that x will have magnitude at least 2 and be within the range of a 32 bit signed integer.
For each case, print the case number and the largest integer p such that x is a perfect pth power.
3
17
1073741824
25
Case 1: 1
Case 2: 30
Case 3: 2