算术基本定理------比1大的整数N的素因子分解是唯一的

算术基本定理:每一个比1大的整数N只能有一种方式分解成素数的乘积。(不考虑因子的次序)

这个命题初看起来似乎是很明显的,但它决不是不证自明的。本篇博文给出两种证明方法。


证明一:反证法

思路: 假设存在一个整数,它有两种根本不同的素数分解,然后从这个假设出发导出一个矛盾,于是说明原假设不成立,命题得证。

证明: 如果存在整数(大于1),有两种根本不同的素数分解,则这样的正整数中必有一个是最小的,设这个最小的正整数为 m

m=p1p2...pr=q1q2...qs(1)

这里的 pq 均是素数,并安排 pq 的次序,使得 p1p2...pr,q1q2...qs .
在上述的分解中, p1 不等于 q1 。如果两者相等,我们能从等式(1)的每一边消去第一个因子(即 p1 q1 ),这与m是最小的可分解为两种素因子分解的正整数矛盾。因此 p1 不等于 q1 ,不妨假设 p1<q1 。构造一个整数

m=m(p1q2...qs)2

将公式(2)中的 m 用等式(1)中的两个表达式带入,可以把m改写成如下两种形式

m=m(p1q2...qs)=p1p2...prp1q2...qs=p1(p2p3...prq2q3...qs)(3)


m=m(p1q2...qs)=q1q2...qsp1q2...qs=(q1p1)(q2q3...qs)>0(4)

由上面的公式(1)和公式(4)可知 m 小于 m 。因此m的素数分解,排除因子的次序外,必须是唯一的。但从公式(3)知素数 p1 m 的因子,所以由公式(4)可知 p1 必须是 (q1p1)(q2q3...qs) 的因子。由于所有的 q 都大于p1,因此 p1 必须是 (q1p1) 的因子。所以存在某个整数h使得 q1p1=p1h q1=p1(h+1) ,这表明 p1 q1 的一个因子,这与 q1 是素数的事实矛盾。从而证明原命题成立。


证明二:

  在证明之前,要引入一个结论“ 如果一个素数p整除乘积ab,则p必整除a或b。 ”关于这个结论的证明,请参见另一篇博文:欧几里得辗转相除法证明及推论
  假设正整数N的素因子分解不唯一(至少有两种分解方式)。
不妨设定 N=p1p2...pr=q1q2...qs (其中p和q均是素数)。
由于素数 p1 整除这个等式的左边 p1p2...pr ,它也必须整除等式的右边 q1q2...qs
所以 p1 必须整除 q1,q2,...,qs 这些因子中的一个 qk 。但 qk 是素数,因此 p1=qk 。把这两个相等的因子从这个等式中消去。
所以 p2 必须整除右边剩下的因子之一 qt ,而 qt 是素数,所以 p2=qt 。然后等式两边划掉相等的因子 p2qt 。同理推导下去,当p都消去后,等式左边仅剩下1。由于所有q都是大于1的,所以右边不能剩下q。因此p和q是以相等的因子对从等式中消去的。这就证明了两种素因子分解是相同的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值