算术基本定理:每一个比1大的整数N只能有一种方式分解成素数的乘积。(不考虑因子的次序)
这个命题初看起来似乎是很明显的,但它决不是不证自明的。本篇博文给出两种证明方法。
证明一:反证法
思路: 假设存在一个整数,它有两种根本不同的素数分解,然后从这个假设出发导出一个矛盾,于是说明原假设不成立,命题得证。
证明: 如果存在整数(大于1),有两种根本不同的素数分解,则这样的正整数中必有一个是最小的,设这个最小的正整数为
m
。
这里的 p、q 均是素数,并安排 p、q 的次序,使得 p1≤p2≤...≤pr,q1≤q2≤...≤qs .
在上述的分解中, p1 不等于 q1 。如果两者相等,我们能从等式(1)的每一边消去第一个因子(即 p1 和 q1 ),这与m是最小的可分解为两种素因子分解的正整数矛盾。因此 p1 不等于 q1 ,不妨假设 p1<q1 。构造一个整数
将公式(2)中的 m 用等式(1)中的两个表达式带入,可以把
和
由上面的公式(1)和公式(4)可知 m′ 小于 m 。因此
证明二:
在证明之前,要引入一个结论“ 如果一个素数p整除乘积ab,则p必整除a或b。 ”关于这个结论的证明,请参见另一篇博文:欧几里得辗转相除法证明及推论 。
假设正整数N的素因子分解不唯一(至少有两种分解方式)。
不妨设定
N=p1p2...pr=q1q2...qs
(其中p和q均是素数)。
由于素数
p1
整除这个等式的左边
p1p2...pr
,它也必须整除等式的右边
q1q2...qs
。
所以
p1
必须整除
q1,q2,...,qs
这些因子中的一个
qk
。但
qk
是素数,因此
p1=qk
。把这两个相等的因子从这个等式中消去。
所以
p2
必须整除右边剩下的因子之一
qt
,而
qt
是素数,所以
p2=qt
。然后等式两边划掉相等的因子
p2和qt
。同理推导下去,当p都消去后,等式左边仅剩下1。由于所有q都是大于1的,所以右边不能剩下q。因此p和q是以相等的因子对从等式中消去的。这就证明了两种素因子分解是相同的。