图像形态学转换

本文介绍了图像处理中的形态学操作,如腐蚀、膨胀、开运算和闭运算,用于消除噪点和修复目标区域。重点讲解了这些操作在二值图像上的应用,以及cv2库的相关函数,如cv2.erode()、cv2.dilate()和cv2.morphologyEx()。通过调整卷积核和迭代次数,可以实现最佳效果。形态学梯度能突出目标区域的轮廓。提供了一些代码示例和参考资料。
摘要由CSDN通过智能技术生成

常用的形态学操作包括:腐蚀、膨胀、开运算、闭运算。其中,开运算是先腐蚀在膨胀,用来消除背景中的噪点;闭运算是先膨胀再腐蚀,用来消除目标中的噪点。在图像处理中我们经常需要这些操作,比如二值处理后,我们的目标区域往往不仅包含噪点,本身也可能相互之间没有连通,这时候适当的形态学处理可以修复目标或者消除噪点,那么腐蚀还是膨胀,两个都用先后顺序如何?都需要进行对比分析。

相关函数为:

{腐蚀,膨胀}:cv2.erode(),cv2.dilate(),传递的参数为:img,kernel,iterations分别代表源图像,卷积核,以及相应处理的次数

形态学往往是针对二值图处理,往往视白色为目标,黑色为背景。

腐蚀,会使得白色区域缩小,处理过程:将卷积核依次沿着图像移动,判断卷积核对应的原图,若该范围内所有像素值为1,则中心元素保持原来的像素值,否则变为0。在处理中,往往用在1)去掉背景(黑色)中的噪点(小白点),2)可以使原本连通在一起的白色区域相互隔开,视效果选择最佳的迭代次数。

腐蚀效果:分别选择不同的kernel,相同迭代次数以及不同迭代次数和相同kernel。

通常kernel选择为(3*3)或者(5*5),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值