code: https://github.com/chxy95/HDRTVNet
本文是ICCV2021文章《A New Journey from SDRTV to HDRTV》的阅读笔记,其完成了视频sdr2hdr问题的定义、问题特性的分析、提出了一种方法、公开了一个数据集HDRTV1K、提出了5种评价指标,接下来记录了文章的要点。
1. introduction
-
为什么需要sdr2hdr算法?
(1) 视频内容正在从标清、高清向超高清发展,而高动态范围则是超高清内容的一个重要的特点
(2) 高动态范围视频所呈现出的内容更接近于人眼在自然场景中的感官
(3) 而随着支持高动态范围的设备越来越普及,但大部分视频内容仍是hdr格式
-
为什么这么重要,相关研究却这么少?
作者认为原因有两个:
(1)hdr10和hlg这些hdr标准最近才被定义好;
(2)缺少大规模数据集用于训练和测试;
-
分析了sdr2hdr与相关课题的关系
(1)sdr2hdr是高度病态的问题,他们具有不同的动态范围、色域和位深
In actual production, contents of SDRTV and HDRTV are derived from the same Raw file but are processed under different standards. Thus, they have different dynamic ranges, color gamuts and bit-depths.
在实际制作中,SDRTV和HDRTV的内容来源于同一个Raw文件,但处理的标准不同。因此,它们具有不同的动态范围、色域和位深度。(2) 在某种程度上,与image-to-image translation such as Pixel2Pixel [11] and CycleGAN有些相似
(3) ldr2hdr在名字上跟sdr2hdr相近,其实并不是一个东西,ldr2hdr旨在预测线性域中的HDR场景亮度,本质上更接近raw file
On the contrary, the task of LDR-to-HDR, which is similar in terms of name, has completely different connotations. LDR-to-HDR methods [21, 26, 10, 24, 5] aim to predict the HDR scene luminance in the linear domain, which is closer to Raw file in essence
(4) 同时进行超分和sdr2hdr的工作
Deep SR-ITM and JSI-GAN -
介绍evaluation metrics
PSNR: mapping accuracy
SSIM, SR-SIM [36]: structural similarity
∆E_ITP [17]
HDR视频转换研究:SDR2HDR的深度学习解决方案

本文深入探讨了SDR到HDR视频转换的重要性,分析了两者之间的差异,并提出了一种三步骤解决方案,包括全局色彩映射、局部增强和高光生成。作者创建了HDRTV1K数据集并提出了新的评价指标,为视频处理领域的研究提供了新视角。
最低0.47元/天 解锁文章
2281

被折叠的 条评论
为什么被折叠?



