xformers版本与其依赖pytorch版本的对应关系

pip安装的xformers版本与其依赖pytorch版本的对应关系

xformerspytorch
0.0.26.post1torch==2.3.0
0.0.25torch==2.2.1
0.0.24torch==2.2.0
0.0.23torch==2.1.1
0.0.22torch==2.0.1
0.0.21torch==2.0.1
0.0.20torch==2.0.1
0.0.19torch==2.0.0
0.0.18torch==2.0.0
0.0.17torch==2.0.0
0.0.16torch==1.13.1
### 关于 VLLM 与 PyTorch 版本兼容性 对于VLLM部署过程中遇到的问题,当尝试降级PyTorch至特定版本如`torch==2.1.1`时如果Pip提示存在依赖冲突,则建议进一步调整其他相关包的版本,比如将`xformers`降至`0.0.23`以解决潜在不匹配问题[^1]。 通常情况下,机器学习框架及其扩展库之间有着严格的版本依赖关系。具体到VLLM项目而言,官方文档或社区反馈往往是最可靠的资源来获取确切的支持矩阵。然而,在缺乏明确指导的情况下,可以从已知信息推断: - **PyTorch版本选择**:考虑到VLLM作为一个较新的大型语言模型推理引擎,倾向于支持最新的稳定版PyTorch。因此推荐使用最新发布的LTS(Long Term Support)版本作为起点。 - **C++编译环境需求**:由于某些底层优化可能涉及到现代C++特性,确保使用的GCC/G++至少达到C++17标准是非常重要的。可以通过命令`gcc --version`检查现有编译器版本并据此决定是否升级[^2]。 针对VLLM的具体兼容性列表并未直接给出,但从上述分析可以推测,保持PyTorch处于其最近几个主要发布版本之一通常是安全的选择,并且要保证本地开发环境中具备适当版本的C++编译工具链。 ```bash pip install torch==2.1.1 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 ``` 此段代码展示了如何指定安装某个特定版本PyTorch(这里假设为CUDA 11.8环境下)。实际操作前应参照目标硬件配置选取合适的URL参数。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值