详解SwinIR的论文和代码(SwinIR: Image Restoration Using Swin Transformer)

本文详细介绍了SwinIR如何将SwinTransformer应用于图像增强任务,包括超分辨率、去噪和JPEG压缩恢复。SwinIR通过结合局部注意力和移动窗口机制改进Transformer,提供了一种结构简单但性能强大的低级图像处理模型。
摘要由CSDN通过智能技术生成

paperhttps://arxiv.org/abs/2108.10257
codehttps://github.com/JingyunLiang/SwinIR

SwinIR将Swin transformer1应用到low level领域的图像增强任务,结合卷积设计了网络结构,在以下三个任务上取得了很好的效果:图像超分辨率(包括classical、lightweight和real-world SR)、图像去噪(包括灰度图和彩色图像去噪)和 JPEG压缩失真去除。本文将结合代码对SwinIR进行详解。

SwinIR的网络结构并不复杂,关键部件就是Swin Transformer layers(STL)卷积层残差连接。卷积和残差连接大家都比较熟悉了,因此我首先结合代码介绍一下swin transformer层,然后自底向上的介绍SwinIR的全貌

1. Swin Transformer layers

SwinIR使用的Swin Transformer layers(STL)是在swin transformer中提出的,并未有改动。STL基于原始的多头注意力transformer层进行优化,主要的不同点在于:1. 局部注意力(local attention);2. 移动窗口机制(shifted window mechanism);

1.1 局部注意力

原始的全局注意力会将图像分成若干个patch,所有的patch之间做自注意力计算;所谓的局部注意力就是首先将图像划分成若干个window,每个window内在进行patch的划分,然后在window内部进行自注意力的计算,而不在一个window内的patch是没有交互的。也就是说,只考虑一个window内的patch,他们之间的计算和全局注意力操作是一样的。

在实现的时候,其实是先将图像按照patch划分,提取每个patch中的特征放在通道维度上,再划分后的图像上进行window的划分,这样window内的包含的是若干个patch的特征,而不是以像素为单位了。比如Swin transformer的patch size = 4x4, window size = 7x7, 假设输入图像的大小为(1, 3, 224, 224), 首先使用self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)完成patch的划分,得到(1,96,56,56),然后再在此基础上完成window的划分,每个window大小是7x7也就意味这个每个window包含7x7个patch,(1,96,56,56)完成窗口划分后会得到8x8=64个窗口。

而在SwinIR中,作者取patch size为1x1,因此就没有必要使用self.proj了,因此PatchEmbed的代码和swin transformer在此地方有差异。

理解局部注意力具体是怎么做的,很好的一个办法是看代码和分析tensor在不同层之间的shape整理出来。下面是我整理的tensor shape变化,这里的输入指的是已经完成了PatchEmbed的输入:

请添加图片描述
其中,b: batchsize, h: 输入高, w:输入宽, ws: 窗口大小, C: channel数, num_heads:attention的head数

1.2 移动窗口机制

由于基于窗口的多头注意力(W-MSA)没有考虑跨窗口的连接,模型建模长距离关联的能力受损。因此swin transformer提出了移动窗口多头注意力机制(SW-MSA),可在保证计算高效性的前提下,扩大感受野。

如下图所示,W-MSA的窗口大小为M*M(图中M=4),那么SW-MSA的窗口划分将向右下移动 ⌊ M / 2 ⌋ ∗ ⌊ M / 2 ⌋ \lfloor M/2 \rfloor *\lfloor M/2 \rfloor M/2M/2

请添加图片描述

但是经过位移之后,窗口数量会变多,由原来的 ⌊ h / M ⌋ ∗ ⌊ w / M ⌋ \lfloor h/M \rfloor *\lfloor w/M \rfloor h/Mw/M变成 ( ⌊ h / M ⌋ + 1 ) ∗ ( ⌊ w / M ⌋ + 1 ) (\lfloor h/M \rfloor + 1) *(\lfloor w/M \rfloor +1) (⌊h/M+1)(⌊w/M+1),而且窗口大小不一致。因此swin transformer提出了循环位移,减少窗口数量,同时可以获得相同大小的窗口进行并行计算。循环位移如下图所示。
请添加图片描述

在代码中,循环位移通过torch.roll实现,shifts为负,代表从下往上移动,从右往左移动,最上和最左循环移动到最下和最右。

# cyclic shift
if self.shift_size > 0:
    shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))

关于torch.roll可参考:https://blog.csdn.net/weixin_42899627/article/details/116095067
如上图所示,经过循环移位后,有三个窗口中有一些patch是本不相邻的,它们不应该做自注意力,所以swin transformer建立了mask机制来完成最终的注意力计算。

关于mask的理解可参考https://github.com/microsoft/Swin-Transformer/issues/38

1.3 关键代码理解

下面来看一下关键代码及注释,首先是WindowAttention的forward函数:

def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape  # 此处的输入是经过window partition的
        # self.qkv(x): num_windows*B, window_size*window_size, 3*C
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # 通过一个全连接层获取所有头的qkv,(3, num_windows*B, num_heads, window_size*window_size, C // num_heads)
        q, k, v = qkv[0], qkv[1], qkv[2] 
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1)) # num_windows*B, num_heads, window_size*window_size, window_size*window_size
		# 可学习的相对位置bias
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0) # num_windows*B, num_heads, window_size*window_size, window_size*window_size

        if mask is not None:
            nW = mask.shape[0]
            # 将mask和attn相加,mask只有两种取值0和-100,因此为0时对attn无影响,为-100时,self.softmax(attn)将变为接近于0
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N) # num_windows*B, num_heads, window_size*window_size, window_size*window_size
            attn = self.softmax(attn) # num_windows*B, num_heads, window_size*window_size, window_size*window_size
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)
        # v:num_windows*B, num_heads, window_size*window_size, C // num_heads
        # attn:num_windows*B, num_heads, window_size*window_size, window_size*window_size
        # attn @ v: num_windows*B, num_heads, window_size*window_size, C // num_heads
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C) # num_windows*B, window_size*window_size, C
        x = self.proj(x) # 全连接层
        x = self.proj_drop(x)
        return x

接下来是SwinTransformerBlock的forward函数

    def forward(self, x, x_size):
        H, W = x_size
        B, L, C = x.shape
        # assert L == H * W, "input feature has wrong size"

        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # (num_windows*B, window_size, window_size, C)
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # num_windows*B, window_size*window_size, C

        # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
        if self.input_resolution == x_size:
            attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, C
        else:
            attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)

        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x

可以看到每个SwinTransformerBlock内部完成的是:
X = M S A ( L N ( X ) ) + X X = MSA(LN(X)) + X X=MSA(LN(X))+X
X = M L P ( L N ( X ) ) + X X = MLP(LN(X)) + X X=MLP(LN(X))+X
其中MSA为W-MSA和SW-MSA交替。

2. 整体网络结构

请添加图片描述
如上图所示,SwinIR包括三个modules,浅层特征提取、深层特征提取和图像重建。其中特征提取模块对所有任务都是一样的,但是图像重建对于不同的任务是不同的。

2.1 浅层特征提取

一个3×3卷积层将特征图通道转成embed_dim:(b, embed_dim, h, w)

self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

2.2 深层特征提取

深层特征提取的基本模块则是第一节中讲解的STL和卷积层和残差连接。STL和卷积组成RSTB,RSTB和卷积组成了深层特征提取。

2.3 图像重建

以下代码可以看到对于不同的任务,图像重建模块是不同的,有的采用最邻近插值+卷积,有的采用pixelshuffle+卷积,有的直接采用卷积。


if self.upsampler == 'pixelshuffle':
    # for classical SR
    x = self.conv_first(x)
    x = self.conv_after_body(self.forward_features(x)) + x
    x = self.conv_before_upsample(x)
    x = self.conv_last(self.upsample(x))
elif self.upsampler == 'pixelshuffledirect':
    # for lightweight SR
    x = self.conv_first(x)
    x = self.conv_after_body(self.forward_features(x)) + x
    x = self.upsample(x)
elif self.upsampler == 'nearest+conv':
    # for real-world SR
    x = self.conv_first(x) # (b, embed_dim, h, w)
    x = self.conv_after_body(self.forward_features(x)) + x
    x = self.conv_before_upsample(x)
    x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
    x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
    x = self.conv_last(self.lrelu(self.conv_hr(x)))
else:
    # for image denoising and JPEG compression artifact reduction
    x_first = self.conv_first(x)
    res = self.conv_after_body(self.forward_features(x_first)) + x_first
    x = x + self.conv_last(res)

SwinIR可以很灵活配置网络的复杂度。影响W-MSA计算复杂度: 4 h w C 2 + 2 M 2 h w C 4hwC^2 + 2M^2hwC 4hwC2+2M2hwC
请添加图片描述

3.总结

  1. 结构简单,性能全面超过cnn-based的方法,适用于多种任务,可做为Low-level的基线模型;
  2. 作者发现与以往基于transformer的方法不同,Swinir不需要比cnn更多的训练数据,收敛速度也更快;
  3. 结构模块化,可以方便调整出不同复杂度的模型;

  1. Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF international conference on computer vision. 2021: 10012-10022. ↩︎

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值