题意:这题是说,在一条直线两侧分别是海跟陆地,也就是说这条线是海岸线。在海里有若干个用x,y坐标标示位置的岛屿,岸上安排雷达站,每个雷达站有覆盖范围。要求求出最少需要多少个雷达站覆盖所有岛屿。
解法:贪心。这题就是在一条直线上画最少的覆盖直线一侧所有点的一系列圆。首先对每个点求出能覆盖到这个点的在直线上左右两极限位置的坐标。然后按照左极限位置对这些点排序。然后从左到右找到每个雷达最多能覆盖的岛屿数。最后就得到了所需的雷达数。当有岛屿离海岸的距离大于雷达覆盖半径,则输出不可能。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int M = 1001;
struct xy
{
double l;
double r;
}p[M];
double min(double a,double b)
{
return a < b ? a :b;
}
int d,n;
bool cmp(struct xy a,struct xy b )
{
return a.l < b.l;
}
int main()
{
double a,b;
int icase = 0;
while(cin >> n >> d)
{
memset(p,0,sizeof(0));
if(n == 0 && d == 0)
{
break;
}
icase ++;
int sum = 1;
bool flag = false;
for(int i = 1; i <= n;i++ )
{
cin >> a >>b;
if(b > d) ///当有岛屿离海岸的距离大于雷达覆盖半径,则输出不可能。
{
flag = true;
}
else
{
p[i].l = a - sqrt(d*d - b*b);
p[i].r = a + sqrt(d*d - b*b);
}
}
if(flag)
{
printf("Case %d: -1\n",icase);
continue;
}
else
{
sort(p+1,p+n+1,cmp);
double s = p[1].r;
for(int i = 2; i <= n; i++) ///从左向右
{
if(p[i].l > s)
{
sum++;
s = p[i].r;
}
else
{
s = min(s,p[i].r);
}
}
}
printf("Case %d: %d\n",icase,sum);
}
return 0;
}