(Counting & Probability) The Counting Principles, Permutation, and Combination

本文详细介绍了计数技术,包括乘法原理、加法原则、包含排除原理及其在硬币翻转问题、排列组合中的应用。讨论了独立事件的概率乘法原理,并举例说明如何计算特定情况下的硬币翻转结果。此外,还探讨了有重复项的排列和组合问题,以及如何从n个不同对象中选择r个的方法。
摘要由CSDN通过智能技术生成

Multiplication Principle

  • If procedure A A A has a a a distinct outcomes, and another procedue B B B has b b b distinct outcomes (by “another”, we essentially mean these two procedure are not related in any ways), then the procedure A B AB AB (do A A A, then B B B, or vice versa as A , B A,B A,B are not related) has a b ( = b a ) ab(=ba) ab(=ba) distinct outcomes.
  • Generally, a procedure A = A 1 . . . . A n A=A_1....A_n A=A1....An, composed by a series of sub-procedures A 1 , . . . , A n A_1,...,A_n A1,...,An with a 1 , . . . , a n a_1,...,a_n a1,...,an outcomes respectively, has ∏ i = 1 n a i \prod_{i=1}^n a_i i=1nai outcomes.

Coin Toss

  • Toss a fair coin for 4 4 4 times, how many possible outcomes?
  • Sol
    • 2 4 2^4 24 because each tossing has 2 2 2 outcomes, and we repeat it for 4 4 4 times.

n P n nPn nPn

  • Fill n n n positions (their “physical locations” are fixed) with n n n distinct objects; each position must take one and only one object. How many possible ways? (This is abbreviated as n P n nPn nPn)
  • Sol
    • The procedure of filling these n n n positions can be decomposed into the following series of sub-procedures:
      • The first position can be filled in n n n distinct ways.
      • The second position thus can be filled in n − 1 n-1 n1 distinct ways.
      • The last position has only 1 1 1 way to be filled, given the previous n − 1 n-1 n1 positions being filled already.
    • Thus, by multiplication principle, we get n ! n! n! many ways to fill the positions.

n P r nPr nPr

  • Fill r r r positions with n n n distinct objects; r ≤ n r≤n rn (This is abbreviated as n P r nPr nPr).
  • Sol
    • The procedure of filling these r r r positions can be decomposed into the following series of sub-procedures:
      • The first position can be filled in n n n distinct ways.
      • The second position thus can be filled in n − 1 n-1 n1 distinct ways.
      • The last position has n − ( r − 1 ) n-(r-1) n(r1) ways to be filled, given the previous ( r − 1 ) (r-1) (r1) positions being filled already.
    • Thus, Thus, by multiplication principle, we get n ! ( n − r ) ! \frac{n!}{(n-r)!} (nr)!n! many ways to fill the positions.

n C r nCr nCr

  • Choose r r r objects from n n n distinct objects, r ≤ n r≤n rn.
  • Sol:
    • For each combination of r r r objects in n C r nCr nCr, it corresponds to r ! r! r! different permutations by the multiplication principle.
    • Therefore, KaTeX parse error: Undefined control sequence: \codot at position 7: nPr=r!\̲c̲o̲d̲o̲t̲ ̲nCr.
    • Thus, n C r = n ! ( n − r ) ! r ! nCr=\frac{n!}{(n-r)!r!} nCr=(nr)!r!n!

n C r = n C n − r nCr=nCn-r nCr=nCnr

  • Out of n n n objects, whenever we choose r r r objects, we are also choosing the rest n − r n-r nr objects, so this identity holds.

More Coin Toss Problem

  • Toss a coin 5 5 5 times. What is the number of situations where exactly 2 2 2 heads and 3 3 3 tails appear?
  • Sol
    • Choose 2 2 2 to be head, and the rest are automatically tails because that’s the only other possibility. Thus, we have 5 C 2 = 5 ! 2 ! 3 ! = 10 5C2=\frac{5!}{2!3!}=10 5C2=2!3!5!=10.

Permutation With Repetation

  • We have 5 5 5 different letters, and with repetation of letters allowed, how many distinct words of length 3 3 3 can we write? What if repetation is not allowed? What if we just choose 3 3 3 letters with repetation allowed, how many distinct combinations will we get?
  • Sol
    • 5 ⋅ 5 ⋅ 5 5\cdot 5 \cdot 5 555 with repetation (this works in the same way tossing a coin 3 3 3 times works, but instead of head and tail, which are two different objects, we now have 5 5 5 different objects)
    • 5 P 3 5P3 5P3 because repetation is now forbidden.
    • The last situation:
      • three distinct letters: 5 C 3 5C3 5C3
      • two repeated letters (so two distinct letters are picked into forming the word): 5 C 2 5C2 5C2
      • three repeated letters: 5 C 1 5C1 5C1
      • The sum will be the answer.

Multiplication principle of probability

  • This is essentially the exact definition of multiple events being mutually independent.
  • Suppose there are two events: A A A and B B B. The probability that A A A happens is p A p_A pA; the probability that B B B happens is p B p_B pB.
  • Then if A A A and B B B are independent events; that is, by the defintion of two events being independnent, P ( A ∩ B ) = P ( A ) ⋅ P ( B ) P(A\cap B)=P(A)\cdot P(B) P(AB)=P(A)P(B) (intuitively, independence means the occurence of one event does not affect the likelyhood of the other, which means P ( A ∣ B ) = P ( A ∩ B ) B = P ( A )    ⟹    P ( A ∩ B ) = P ( A ) P ( B ) P(A|B)=\frac{P(A\cap B)}{B}=P(A)\implies P(A\cap B)=P(A)P(B) P(AB)=BP(AB)=P(A)P(AB)=P(A)P(B)). This is the multiplication principle for probability.
  • It actually fits the notion of the multiplication principle in counting pretty well: A ∩ B A\cap B AB just means that A A A happens first and then B B B happens (or vice versa, as they are independent events), so we essentially have to achieve the event A ∩ B A\cap B AB using a sequence of events: A , B A,B A,B.
  • If A 1 , . . . , A n A_1,...,A_n A1,...,An are mutually independent events (that is, they are pairwise independent, and P ( A 1 ∩ . . . ∩ A N ) = ∏ i P ( A i ) P(A_1\cap ...\cap A_N)=\prod_i P(A_i) P(A1...AN)=iP(Ai)), then P ( A 1 ∩ . . . ∩ A N ) = ∏ i P ( A i ) P(A_1\cap ...\cap A_N)=\prod_i P(A_i) P(A1...AN)=iP(Ai).

Addition Principle

  • If we have A A A number of ways of doing something and B B B number of ways of doing another thing and we can not do both at the same time, then there are A + B A + B A+B ways to choose one of the actions

Inclusion-Exclusion Principle

  • ∣ A ∪ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ∩ B ∣ |A\cup B|=|A|+|B|-|A\cap B| AB=A+BAB
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值