GNN-Learning-and-Integration
Sorry for that, most of the materials are written in Chinese. Friendly for beginners.
Code is easily to find on github.
1. GNN Intuitive Learning
- Fundamental graph theory
- Deep Learning on Graph: GraphSAGE
- what is Convolution, graph Laplacian
- Graph Neural Network by kipf
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型
2. GNN Mathematical Theory Learning
- GNN Conclusions
- GNN Review report
- Graph model: graph embedding and graph convolutional network
- Mathematical foundation of GNN
- Dive into Convolution deeply: Mathematical derivation
3. Academic Paper
- Graph Neural Networks-A Review of Methods and Applications.pdf
- The graph neural network model
- Diffusion-Convolutional Neural Networks
- Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
- semi_supervised_classification_with_graph_convolutional_networks.pdf
- Variational Graph Auto-Encoders.pdf
4. Survey
5. Tools
- Three Tools
- Tensorflow
- Keras
- Pytorch
- Dataset
6. Other
More material is on my github: https://github.com/Billy1900/GNN-Learning-and-Integration