GNN学习—综述

本文探讨了GNN产生的原因,其发展历史,包括RecGNNs、ConvGNNs、GAEs和STGNNs的分类,以及图神经网络在图分类、节点分类、图自编码和时空图领域的应用。同时,概述了GNN的未来研究方向和与其他技术如网络嵌入、图核方法的区别。
摘要由CSDN通过智能技术生成


主要基于下面这篇综述的文章,对GNN有一个大概的总结
A Comprehensive Survey on Graph NeuralNetworks

在这里插入图片描述

一 GNN产生原因

一方面,深度学习可从欧氏空间数据中提取潜在表示,使得神经网络成功推动了模式识别和数据挖掘的研究,但在许多实际应用场景中的数据是从非欧式空间生成的,例如图数据。另一方面,机器学习算法的核心假设是实例彼此独立,而图数据是不规则的,图中每个节点通过一些复杂的链接信息与其邻居相关,这些信息可用于捕获节点间的相互依赖关系。因此,为了将深度学习方法应用到图数据领域,产生了图神经网络——GNN。

欧式空间就是二维空间、三维空间以及继承三维空间定理的N维空间。是一个有「内积」的线性空间,包括文本、音频、图像、视频等数据。这些数据有一个特点就是排列整齐。
非欧几里德结构排列不整齐,具体体现在:对于数据中的某个点,难以定义出其邻居节点,或者是不同节点的邻居节点的数量是不同的。

二 GNN发展

在这里插入图片描述

早期的研究属于递归图神经网络(RecGNN)类别。他们通过迭代传播邻居信息直到到达稳定的固定点来学习目标节点的表示。
之后受到CNN在计算机视觉领域成功的鼓舞,并行开发了许多重新定义图数据卷积概念的方法,这些方法以卷积图神经网络(ConvGNN)为基础。 ConvGNN分为两个主要流,基于频谱的方法和基于空间的方法。

三 GNN分类

综述中将GNN分为以下四类:

  • RecGNNs(递归图神经网络 )
  • ConvGNNs(卷积图神经网络)
  • GAEs(图自编码器)
  • STGNNs(时空图神经网络)
    在这里插入图片描述

3.1 RecGNNs(Recurrent Graph Neural Networks)

递归图神经网络旨在学习具有递归神经体系结构的节点表示。 假设图中的节点不断与其邻居交换信息,直到达到稳定的平衡。这种消息传递的思想被基于空间的卷积图神经网络所继承。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值