C++ 动态规划-LCS最长公共子序列

本文介绍了如何使用动态规划解决C++中LCS(最长公共子序列)问题,包括二维解法和压缩解法。二维解法通过定义状态转移矩阵,根据字符是否相等更新最长子序列长度;压缩解法则是在不牺牲效率的前提下减少空间占用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LCS-最长公共子序列


子序列:不一定是连续的,但次序是一定的.

如”ac”、”bcd”都是”abcd”的子序列

 

最长公共子序列(Longest Common Subsequence )就是求两个串的公共子序列中的最大长度.串A的长为n,串B的长为m.

 

1:二维解法


定义:f[i][j]表示串A的前i个字符和串B前j个字符的LCS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值