数论-扩展欧几里得算法

扩展欧几里得算法

已知(a, b)求解(p, q), 使得p * a + q * b = GCD(a, b);

一定有解;


因为GCD(a, b) = GCD(b, a%b)

所以p * a + q * b = GCD(a, b)

= GCD(b, a%b)

= p * b + q * a % b

= p * b + q * (a - a/b * b)

= p * b + q * a - q * a/b * b

= q * a + (p - a/b * q) * b

就把a与b的线性组合转换为b,a%b的线性组合

不断缩小,当b=0时,p=1,q=1


递归求解

【code】ax+by=gcd(a,b) 求解x,y

#include <iostream>
using namespace std;
//Extended_GCD

int Extended_GCD(int a, int b, int &p, int &q) {
	if(b == 0) {
		p = 1;
		q = 0;
		return a;
	}
	int gcd = Extended_GCD(b, a%b, p, q), tmp;
	tmp = p;
	p = q;
	q = tmp - a/b * q;
	return gcd;
}

int main() {
	int gcd, a, b, x, y;
	cin >> a >> b;
	gcd = Extended_GCD(a, b, x, y);
	cout << gcd << ' ' << x << ' ' << y << endl;
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值