「学习笔记」牛顿迭代法

牛顿迭代法( Newtonsmethod N e w t o n ′ s m e t h o d )一般用于求函数的一个零点。

牛顿迭代法

牛顿迭代法三个步骤:

  1. 随机 / 猜一个 p p
  2. x=p时的切线,即求导数
  3. p= p = 切线零点,返回步骤 2 2 ,重复若干次.

即:xn+1=xnf(xn)f(xn)

重复得越多得到的根越精确,一般达到精度要求就可以停止.

例:求 f(x)=x32x2+x1 f ( x ) = x 3 − 2 x 2 + x − 1 的一个零点

首先求出导数 f(x)=3x24x+1 f ′ ( x ) = 3 x 2 − 4 x + 1 .然后就开始牛顿迭代.

#include <cstdio>
#include <cmath>

#define f(x) (x*x*x-2*x*x+x-1)
#define f1(x) (3*x*x-4*x+1)

int main() {
    double x = 111, nx;
    const double eps = 1e-6;
    while(true) {
        nx = x - f(x) / f1(x);
        if(fabs(nx - x) < eps) break;
        x = nx;
    }
    printf("%f\n", x);
    return 0;
}

牛顿迭代法的应用

应用:只能求函数零点

应用除了求函数零点外,还可以求解:

am a m

方法:设 b=am b = a m ,则 a=bm a = b m ,转换成求 f(b)=bma f ( b ) = b m − a 的零点

首先求导。 f(b)=mbm1 f ′ ( b ) = m b m − 1

下面是求平方根的程序:

#include <cstdio>
#include <cmath>

#define f(b) (b*b-a)
#define f1(b) (2*b)

double Sqrt(double a) {
    double x = 111, nx;
    const double eps = 1e-6;
    while(true) {
        nx = x - f(x) / f1(x);
        if(fabs(nx - x) < eps) break;
        x = nx;
    }
    return x;
}

int main() {
    double x;
    scanf("%lf", &x);
    printf("%f\n", Sqrt(x));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值