《器官芯片技术研究进展及产业链 调研数据报告2023年版》

器官芯片是一种新型细胞培养技术,旨在模拟人体器官功能,尤其在药物筛选和安全性评估中发挥作用。它结合了多细胞类型、立体结构和微生理系统,提供更精确的输入和输出控制,并利用数据分析和AI进行复杂反应解读。目前,该技术在基础科研和制药行业有广泛应用,并有望减少对动物实验的依赖。

摘要

器官芯片,虽然也称为“芯片”,但与半导体硅芯片没有任何关系。器官芯片技术是在现有单层2D细胞培养和3D类器官培养技术基础上发展出来的新式细胞培养技术。其目的是最大限度的模拟特定组织器官的高级功能。

器官芯片一词直接翻译自Organ Chips或Organ on a Chip。另外,在文献中,还有Human on a Chip、MPS(Microphysiological systems,微生理系统)等近似的名称。并且和经典的3D类器官培养有相似之处。某些文献将器官芯片和类器官也混为一谈。

传统的2D细胞培养,细胞缺乏立体结构。经典的、单纯采用悬滴法或基质胶包埋方法进行的3D细胞培养,虽然能得到拥有一定程度立体结构的微组织块,但通常采用的细胞类型单一,缺乏不同类型3D微组织块间的相互串联。且在检测3D细胞对药物的反应,即“输入”和“输出”时,都过于简单,而且对微组织块的反应,缺乏全面的检测。

因此,从器官芯片的特点出发,我们认为符合以下全部或部分特征时,才能称之为器官芯片:

1. 培养了一种或多种类型的细胞。细胞种类多时采用混合培养或串联培养;

2. 细胞培养完成后通常具有一定的立体结构,并与特定的体内组织或器官结构类似;

3. 通常能模拟人体组织器官的部分高级功能,而这一高级功能在普通的2D培养或3D培养中通常无法实现;

4. 方便的“输入”和“输出”。“输入”是指对芯片上细胞的处理,尤其是高通量的加药处理。“输出”是指对芯片上细胞反应的检测;

5. 输出结果处理、分析和解读。

例如,以肺组织芯片为例,首先在结构上,通常采用气液界面培养以模拟呼吸道上皮组织结构;在检测时,也要考虑怎样全面检测呼吸道的功能,比如分泌粘液、纤毛运动、紧密连接屏障功能等。同时,对肺组织芯片反应的检测,也会产生大量超出常规的数据,比如纤毛运动怎样量化、粘液分泌功能的检测和量化。因此,器官芯片进一步对实验结果的数据分析提出了更高的要求。

目前以及未来一段时间内,对器官芯片的需求,一方面来源于基础科学研究领域,研究不同种类的细胞组织器官的相互作用以开发更先进的器官芯片。另一方面来源于制药领域。在新药的筛选阶段,用器官芯片进行高通量的化合物或生物药的筛选。或在药品上市前,用器官芯片替代传统的动物实验,用于药品的安全性评价。用人体细胞的器官芯片进行药物的安全性评价,这对于动物保护和福利、提高药品质量拥有巨大价值。

本报告将对此前沿领域进行介绍,重点进行器官芯片全产业链条的技术分析,探讨特定器官芯片应达到的参数与标准,分析了目前国内外的市场主要参与者及其产品,并对器官芯片的未来发展方向进行展望和预测。

目录

一、器官芯片概述

1. 器官芯片的研究历史

2. 器官芯片市场规模预测

二、器官芯片全产业链条的技术分析

1. 器官芯片的细胞来源

2. 建立立体、多联、易观察和检测的培养方式

3. 微型化培养系统与给药系统

4. 检测指标参数的选择与配套检测设备

5. 数据分析与AI的使用

三、器官芯片应达到的参数与标准

1. 肝组织芯片

2. 肺组织芯片

3. 心脏组织芯片

4. 脑与血脑屏障芯片

5. 肾脏组织芯片

6. 皮肤芯片

7. 小肠组织芯片

8. 肌肉组织芯片

9. 多器官组织联合芯片

四、21家国外器官芯片企业的产品介绍

五、器官芯片技术和企业的未来发展方向预测

》》》更多详情请微信搜索“赛次元”进入获取~

【信号处理】VMD-fft-hht模板,直接导入自己数据就能处理(Matlab代码实现)内容概要:本文介绍了一个基于Matlab的信号处理模板工具包,重点实现了VMD(变分模态分解)、FFT(快速傅里叶变换)和HHT(希尔伯特-黄变换)三种信号处理方法的集成化流程。该模板支持用户直接导入自身采集的数据进行一键式处理,适用于非平稳、非线性信号的去噪、特征提取与频谱分析,广泛应用于机械故障诊断、生物医学信号处理和工程振动分析等领域。文档还列举了多个相关科研方向和技术服务内容,涵盖智能优化算法、机器学习、路径规划、电力系统仿真等多个领域,展示了其在科研仿真中的通用性和扩展性。; 适合人群:具备一定Matlab编程基础的研究生、科研人员及工程技术人员,尤其适合从事信号处理、故障诊断、数据分析等相关领域的研究人员;初学者可通过模板快速上手实践。; 使用场景及目标:①对复杂信号进行高效分解与特征提取;②实现从原始信号到频谱分析的全流程自动化处理;③作为科研项目或论文复现的基础工具,提升研究效率;④结合其他优化与机器学习算法开展综合性课题研究。; 阅读建议:建议使用者先熟悉VMD、FFT和HHT的基本原理,再结合实际数据运行模板代码,逐步调试参数以优化分解效果;同时可参考文中提供的其他资源链接,拓展至多学科交叉应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值