softmax函数作用
交叉熵代价函数的优点
一般的代价函数比如二次代价函数,对参数w或者b求偏导之后,结果和激活函数的导数成正比,也就是说当激活函数导数很小的时候(随机初始化导致激活函数输入小,从而对应导数大),学习就会变得很慢。
而如果使用交叉熵的代价函数,最后激活函数的导数项会抵消,只剩下x和激活函数本身,w的梯度只和输入值与实际值之间的差值成正比,也就是说,误差越大,学习速率就会越快。
softmax函数作用
交叉熵代价函数的优点
一般的代价函数比如二次代价函数,对参数w或者b求偏导之后,结果和激活函数的导数成正比,也就是说当激活函数导数很小的时候(随机初始化导致激活函数输入小,从而对应导数大),学习就会变得很慢。
而如果使用交叉熵的代价函数,最后激活函数的导数项会抵消,只剩下x和激活函数本身,w的梯度只和输入值与实际值之间的差值成正比,也就是说,误差越大,学习速率就会越快。