笔记(总结)-利用GMM和EM算法解决聚类问题

本文详细介绍了如何利用高斯混合模型(GMM)和期望最大化(EM)算法解决聚类问题。通过阐述GMM的构成和优势,以及EM算法的E步和M步,解释了在GMM中确定聚类标签的过程。同时,对比了GMM与K-means算法的联系,指出两者在不同初始化条件下的收敛性和聚类效果差异。
摘要由CSDN通过智能技术生成

对Gaussian Mixture Model和Expectation Maximization算法一直以来了解不多,一来直接使用这两个方法的场景少,二来初看这两个算法确实有些一头雾水,不太理解为什么要这么做。上学期的课又涉及到了这部分,还是咬牙把这块给啃了下来,结合“周志华西瓜书”,在聚类场景下对这两部分做下总结。


高斯混合(Mixture of Gaussian)

$n$维随机变量$x$服从多元高斯分布,则概率密度函数为:
$p(x)= \frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}}exp[-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu) ]$

其中 μ \mu μ为均值向量, Σ \Sigma Σ为协方差矩阵,给定这两个参数,则可以确定高斯分布,记为 p ( x ∣ μ , Σ ) p(x|\mu,\Sigma) p(xμ,Σ)。当维度退化为一维、二维空间时,高斯分布图像如下:
这里写图片描述

在此基础上,我们可以定义高斯混合分布如下:

$p_M(x)=\sum_{i=1}^{k} \alpha_i \cdot p(x|\mu_i,\Sigma_i)$

该分布由 k k k个高斯分布混合而成, α i \alpha_i αi为混合系数,表示每个高斯分布的占比, ∑ i α i = 1 \sum_i \alpha_i=1 iαi=1

为什么要使用高斯混合模型做聚类?考虑如下两个图:

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值