某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。Output对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2Sample Output
2 -1
思路:最开始我一直想的是用广搜,先用结构体将城市A、城市B以及他们之间的距离求出来,然后再搜索,结果没想到一直WA,还是那种找不到BUG的WA。后面才想到最短路,因为是做题的时候才学习的最短路,所以又WA了好多发。终于在WA了20多发的时候A了,一瞬间感觉世界超美好~~~
代码1号:Floyd—Warshall
#include<stdio.h>
#define min(a,b) a<b?a:b
int m,n,a,b,x,s,t;
int e[320][320];
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0; i<n; i++)//初始化数组
{
for(int j=0; j<n; j++)
{
if(i!=j)
e[i][j]=10000;//题目说了 两个城市之间的距离不超过10000 所以这么多就够了
else
e[i][j]=0;
}
}
for(int i=0; i<m; i++)//城市A和城市B之间的距离可能会有多个 所以要选择比较小一点的那一个
{
scanf("%d %d %d",&a,&b,&x);
e[a][b]=e[b][a]=min(e[a][b],x);
}
scanf("%d %d",&s,&t);
for(int k=0; k<n; k++)//Floyd-Warshall
{
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
}
}
}
if(e[s][t]<10000)
printf("%d\n",e[s][t]);
else
printf("-1\n");
}
return 0;
}
代码2号:Dijkstra
#include<stdio.h>
#include<string.h>
#define inf 100000
#define min(a,b) a<b?a:b
int main()
{
int m,n,a,b,x,s,t,dis[320],tag[320],e[320][320];
while(~scanf("%d %d",&n,&m))
{
for(int i=0; i<n; i++)//初始化数组
{
for(int j=0; j<n; j++)
{
if(i==j)
e[i][j]=0;
else
e[i][j]=inf;
}
}
for(int i=0; i<m; i++)
{
scanf("%d %d %d",&a,&b,&x);
e[a][b]=e[b][a]=min(e[a][b],x);
}
scanf("%d %d",&s,&t);
for(int i=0; i<n; i++)
dis[i]=e[s][i];
for(int i=0; i<n; i++)//用来标记已经松弛过的点
tag[i]=0;
tag[s]=1;
for(int i=0; i<n-1; i++) //Dijkstra算法核心语句
{
int mi=inf,u,v;
for(int j=0; j<n; j++)
{
if(tag[j]==0&&dis[j]<mi)
{
mi=dis[j];
u=j;
}
}
tag[u]=1;
for(v=0; v<n; v++)
{
if(e[u][v]<inf)
{
if(dis[v]>dis[u]+e[u][v])
dis[v]=dis[u]+e[u][v];
}
}
}
if(dis[t]<inf)
printf("%d\n",dis[t]);
else
printf("-1\n");
}
return 0;
}