思路:在排序数组中查找数,找到返回索引,找不到返回应插入的位置,如果最后target>mid那么他应该插入到mid后,也就是left位置,如果target<mid那么他因该插入在mid的位置,也是left的位置
class Solution {
public:
int searchInsert(vector<int>& nums, int target)
{
int i=0;
int j=nums.size()-1;
int mid =0;
while(i<=j)
{
mid = (i+j)/2;
if(nums[mid]>target)
{
j= mid-1;
}
else if(nums[mid]<target)
{
i=mid+1;
}
else
{
return mid;
}
}
return i;
}
};
如果找到直接返回,没找到,如果mid>target,那么我们需要小的也就是mid-1也就是j,如果mid<target,直接返回j。
class Solution {
public:
int mySqrt(int x)
{
int i=0;
int j=x/2+1;
int mid=0;
while(i<=j)
{
mid = (i+j)/2;
if((long long)mid*mid>x)
{
j=mid-1;
}
else if(mid*mid<x)
{
i = mid+1;
}
else{
return mid;
}
}
return j;
}
};
思路:先找到等于target的 利用二分法,然后分别向左向右寻找
class Solution {
public:
vector<int> searchRange(vector<int>& nums, int target)
{
vector<int>vec(2,-1);
if(nums.size()==0)return vec;
int i=0;
int j =nums.size()-1;
int mid = 0;
int l=0;
int r =0;
while(i<=j)
{
mid =(i+j)/2;
if(nums[mid]>target)
{
j = mid-1;
}
else if(nums[mid]<target)
{
i = mid+1;
}
else{
break;
}
}
if(target!=nums[mid])return vec;
l=mid;
r=mid;
while(l>=0)
{
if(nums[l]==target)l--;
else break;
}
while(r<nums.size())
{
if(nums[r]==target)r++;
else break;
}
vec[0]=l+1;
vec[1]=r-1;
return vec;
}
};
总结
二分法主要对于排序的数组,通过双指针可以更快速的搜索元素的位置,同时也要理解left和right的意思。