Homework 1, Combinatorics, 2020 Fall, USTC

Homework 1

Combinatorics, 2020 Fall, USTC

  1. Let n , r n,r n,r be positive integers and n ≥ r n\ge r nr. Give a combinatorial proof of ( r r ) + ( r + 1 r ) + . . . + ( n r ) = ( n + 1 r + 1 ) . \binom{r}{r}+ \binom{r+1}{r}+...+\binom{n}{r}=\binom{n+1}{r+1}. (rr)+(rr+1)+...+(rn)=(r+1n+1).

  2. Let n n n be a positive integer.
    Prove that the identity x n = ∑ k = 1 n S ( n , k ) ( x ) k x^n=\sum_{k=1}^n S(n,k)(x)_k xn=k=1nS(n,k)(x)k holds for every real number x x x, where S ( n , k ) S(n,k) S(n,k) is the Strirling number of the second kind, and ( x ) k : = x ( x − 1 ) . . . ( x − k + 1 ) (x)_k:=x(x-1)...(x-k+1) (x)k:=x(x1)...(xk+1) denotes a polynomial of degree k k k with variable x x x.
    Hint: first prove the case when x x x is a positive integer by double-counting certain mappings.

  3. Let n , r n, r n,r be integers satisfying 0 ≤ r ≤ 2 n 0\le r\le 2n 0r2n. Find the value of ∑ i = 0 n ( − 1 ) i ( n i ) ( n r − i ) \sum_{i=0}^n (-1)^i\binom{n}{i}\binom{n}{r-i} i=0n(1)i(in)(rin).

  4. For any integer n ≥ 2 n\ge 2 n2, let π ( n ) \pi(n) π(n) be the number of primes in { 1 , 2 , . . . , n } \{1,2,...,n\} {1,2,...,n}.

    1. Prove that the product of all primes p p p satisfying m < p ≤ 2 m m<p\le 2m m<p2m is at most ( 2 m m ) \binom{2m}{m} (m2m), where m ≥ 1 m\ge 1 m1 is any integer.
    2. Use (a) to prove that π ( n ) ≤ C n log ⁡ n \pi(n)\le \frac{Cn}{\log n} π(n)lognCn for some absolute constant C C C. (Hint: by induction and use the estimation on ( 2 m m ) \binom{2m}{m} (m2m))
  5. How many ways are there to seat n n n couples at a round table with 2 n 2n 2n chairs in such a way that none of the couples sit next to each other?
    If one seating plan can be obtained from other plan by a rotation, then we will view them as one plan.

  6. Prove the following statements.

    1. If p p p is odd, then ∣ A 1 ∪ A 2 ∪ . . . ∪ A n ∣ ≤ ∑ k = 1 p ( − 1 ) k + 1 S k |A_1\cup A_2\cup...\cup A_n|\le \sum_{k=1}^p (-1)^{k+1} S_k A1A2...Ank=1p(1)k+1Sk;
    2. If p p p is even, then ∣ A 1 ∪ A 2 ∪ . . . ∪ A n ∣ ≥ ∑ k = 1 p ( − 1 ) k + 1 S k . |A_1\cup A_2\cup...\cup A_n|\ge \sum_{k=1}^p (-1)^{k+1} S_k. A1A2...Ank=1p(1)k+1Sk.

    Here, S k S_k Sk is the sum of the sizes of all k k k-fold intersections as defined in class.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值