论文学习——EXPLOITING PROMPT LEARNING WITH PRE-TRAINED LANGUAGE MODELS FOR ALZHEIMER‘S DISEASE DETECTION

引言

  • 这篇文章是ICASSP2023年的一篇文章,也是少有的公开代码的一个AD检测文章,需要好好学习。
  • 主要是为给我当前使用语义特征检测AD病人提供一些建议。

正文

Abstract

  • 基于语音检测AD是一种十分方便并且能够广泛使用的非侵入式的检测方式。目前已开发的系统中,广泛是使用预训练语言模型如bert,生成对应文本嵌入特征。但是这种PLM最初的目标是基于掩码或者句子预测的,和常规的AD检测任务并不相同。

  • 本文为了解决这个问题,提出如下解决方案

    • 基于prompt的预训练语言模型微调,使之和常规的AD分类保持一致
    • 将基于停顿和迟疑的不流利特征,融入到prompt的提示语中
  • 除此之外,我们下述两种方式的融合

    • 使用不同的PLM模型,特征特征提取,比如说BERT还有RoBERTa
    • 使用不同的微调策略传统的掩码语言模型微调和基于提示的微调
  • 实验设置和结果如下

    • 使用15次实验运行准确率分数的平均值和标准偏差实现比较
    • 在ADReSS数据集上
      • 手动ASR识别准确率:84.20%
      • 自动ASR识别准确率:82.64%

Introduction

  • 阿尔茨海默病(AD)是老年人中最常见的一种痴呆形式。其特征包括记忆、认知和运动技能的逐渐退化,以及患者的语言和言语技能的相应下降。目前,还没有有效的治疗阿尔茨海默病的方法,但及时的干预方法可以延缓其进展,减轻对患者的负面影响。与其他筛查技术相比,基于语音和语言技术的自动AD诊断是非侵入性的且更具可扩展性。因此,近年来对自动AD筛查和诊断系统的开发兴趣日益浓厚,特别是最近的ADReSS挑战赛就是一个明显的代表。

  • 目前,基于语音的AD检测系统,使用如下的特征

  • 从AD检测的语音记录中提取音频特征

    • 光谱特征、韵律特征、音质特征、预训练的深度神经网络的嵌入特征
  • 从转述文本中提取的语义特征

    • 带有词汇和语义特征的手工特征、预训练的文本神经嵌入
    • 不流利程度也是作为AD检测的一个主要的手段

研究比较

  • 与单独使用声学特征相比较,使用从老年人语音记录中提取的语言学特征区分AD和非AD效果更好。
  • 无论是将PLM作为特征提取器还是在AD数据集上进行微调,效果都不错,都能够达到93.8%

PLM特征和分类器的差异——为什么需要微调PLM模型

  • 在将预训练语言模型(如BERT、GPT等)应用于阿尔茨海默病(AD)检测时面临的一个主要挑战是,PLM在其预训练阶段使用的目标函数与后续AD检测任务的目标不一致。PLM通常是通过诸如掩码语言建模(MLM)或下一句预测这样的任务进行预训练的,这些任务主要关注于语言理解和生成,而与AD分类的目标有所不同。

  • 先前的研究通常采用一种流水线架构**,其中PLM生成的文本嵌入特征在离线进行微调后,被用作输入到专门为AD检测优化的分类器(如SVM)中**。然而,这种方法存在一个问题:PLM作为特征提取器的学习目标与后端AD分类器的目标不一致,这可能影响整体模型对AD的检测效果。

  • 此外,这种分离的框架限制了将对AD检测有用的额外信息(如言语流畅度、年龄或教育背景等细粒度注释标签)纳入PLM训练的能力。这意味着,尽管PLM在处理语言数据方面非常强大,但它们在特定于AD检测的任务上可能未能充分利用所有相关信息,从而可能影响检测的准确性和效率。

文章思路

  • 我们采用了基于prompt的微调范式,解决上述不一致的问题。通过将NLP问题视为一个完形填空式的任务,基于提示学习方法在文本分类中的效果很棒,尤其是针对小样本学习场景。目前来看,基本上没啥人研究过该方法在医疗方面的应用。
    • 这里需要好好参考一篇文章:Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

首先

  • 我们这篇文章中,我们将AD和非AD问题转化为概率标签预测问题,比如说,基于模板“诊断为”,其中“痴呆”和“健康”作为“MASK”的可能标签。通过这种方式,使得BERT和RoBERTa等一系列语言模型始终和当前领域相适应,然后在基准数据集ADReSS2020上,向AD分类任务进行微调。为了减少过拟合的风险,我们使用了决策投票对不同更新区间的模型进行平均。

然后

  • 在将PLM针对AD检测进行微调的过程中,我们将不流利特征(犹豫和停顿的频率)融合到prompt提示中去。

最后

  • 为了探索不同微调方法(提示学习和传统的掩码词或句子预测)之间的互补性,文章还应用了基于决策投票的系统组合,增强了模型在ADReSS20数据集上的表现。
文章主要研究贡献
  • 第一<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值