解最优化问题
本文版权属于重庆大学计算机学院刘骥,禁止转载
最优化问题的分类
按照目标函数的可导性,可以将最优化问题分为两类:
1. 目标函数可导,例如目标函数为
f(x)=x2+x+1
2. 目标函数不可导,例如目标函数为
f(X)=∑p∈Xep
对于不可导的目标函数,其解法比较特殊。采用模拟退火算法、粒子群算法、遗传算法、蚁群算法、图割(Graph Cut)算法等方法,可以求解这类问题,但通常无法得到精确的解(或者说全局最优解)。并且有些问题,仅能用特定的解法,求出特定的解。由于该类问题的复杂性,本文对不可导目标函数问题不进行讨论。如果你在实际中遇到了这类问题,可以采用如下方法解决:
查学术论文,github上找代码;如果找不到解决方案,恭喜你,这是一个获得数学大奖的机会
本文余下部分,针对可导的目标函数进行讨论,这类问题存在大量通用的算法。人类历史发展到2017年,你甚至不需要了解具体算法的原理,也能够很happy的解决这类问题。
直接开始求解
下面我们用一个简单的最优化问题为例:
显然 x=0,y=0 时, f(x,y) 有最小值1。问题在于,计算机如何求解这个问题呢?
downhill simplex
Python语言的scipy.optimize包的fmin函数实现了downhill simplex方法,也称为Nelder–Mead方法(downhill、simplex和downhill simplex是不同的概念,有兴趣可以参考维基百科)。这里不去讲解downhill simplex的原理,有需要原理的读者,请移步到https://en.wikipedia.org/wiki/Nelder–Mead_method。
fmin函数的说明如下:
我估计你看不懂,所以我不准备解释。我们直接看代码吧。
# encoding=utf-8
import scipy.optimize as opt
#定义目标函数f
def f(X):
x=X[0]
y=X[1]
return x**2+y**2+1;
x=10
y=10
X=[x,y]
X=opt.fmin(f,X) #f是目标函数,X是初始猜测的解
x=X[0]
y=X[1]
print x,y
程序执行结果如下:
最终
x
和
Conjugate Gradient
downhill simplex比较简单,实现没有难度。但它的问题在于比较慢,下面我们试试 Conjugate Gradient法。使用scipy.optimize包的fmin_cg方法。这个方法需要求出目标函数的偏导数(梯度):
# encoding=utf-8
import scipy.optimize as opt
import numpy as np
#定义目标函数f
def f(X):
x=X[0]
y=X[1]
return x**2+y**2+1;
#定义目标函数f对应的梯度函数
def gradf(X):
x=X[0]
y=X[1]
gx=2*x
gy=2*y
return np.asarray((gx,gy)) #梯度以向量形式返回
x=10
y=10
X=[x,y]
X=opt.fmin_cg(f,X,fprime=gradf) #f是目标函数,X是初始猜测的解,增加梯度
x=X[0]
y=X[1]
print x,y
运行结果如下:
可以看出该方法比downhill simplex运行得更快。当然这是显然的,因为有了梯度信息。
你居然不会求偏导数!
OK!OK!有办法可以解决!今年是2017年,如果你还不会求偏导数,那么交给计算机吧!
X=opt.fmin_cg(f,X)
OK!计算结果如下:
慢了一些,函数的演化次数增加了15次,why?因为算法用数值法来计算梯度!具体来说(你可以忽略下面的内容,把问题交给人工智能):
def gradf(X):
x=X[0]
y=X[1]
gx=(f([x+0.0000001,y])-f([x,y]))/0.0000001
gy=(f([x,y+0.0000001])-f([x,y]))/0.0000001
return np.asarray((gx,gy))
也就是:
Newton-CG
试试Newton-CG,也就是fmin_ncg函数,该函数需要2阶偏导数构成的Hessian矩阵:
代码如下:
# encoding=utf-8
import scipy.optimize as opt
import numpy as np
#定义目标函数f
def f(X):
x=X[0]
y=X[1]
return x**2+y**2+1;
#定义目标函数f对应的梯度函数
def gradf(X):
x=X[0]
y=X[1]
gx=2*x
gy=2*y
return np.asarray((gx,gy)) #梯度以向量形式返回
def hess(X):
return np.array([[2,0],[0,2]]) #hessian矩阵
x=10
y=10
X=[x,y]
X=opt.fmin_ncg(f,X,fprime=gradf,fhess=hess) #f是目标函数,X是初始猜测的解,增加梯度
x=X[0]
y=X[1]
print x,y
运行结果如下:
非常精确!当然如果不会计算hessian,如下操作:
X=opt.fmin_ncg(f,X,fprime=gradf) #注意梯度是必须的
结果如下:
总结
现在是2017年,基本的最优化问题已经经过了几百年的发展(不是几十年),因此有大量现成的函数库可以使用。直接调用这些库函数,你甚至不需要知道如何求导数、如何求Hessian矩阵,也可以很好的解决最优化问题(可导的)。如果不追求效率,如果精度可以接受,那么最最原始的downhill simplex方法已经能够适用于大多数场景(你需要小数点后几位的精度?)。
数学原理
大多数最优化的书籍,在讲解数学原理时,都抱着一定要让人看不懂,才能显得高深莫测的心态。其实求解可导目标函数的数学原理是极其简单的,那就是:穷举,更高效的穷举。
假设目标函数为
f(X)
,其中
X∈Rn
(注意这意味着
X
是一个向量,
学过代数吧?于是这个函数就变成了:
现在我们来讨论女性择偶函数f(X)的最优化!假定女性朋友给出的函数是这样的:
这是一个二次函数(请自行展开),C是系数矩阵(我们只是假设女性朋友给出了这样的二次函数,真实情况未必)。OK,其实这个函数长什么样子,不影响后面的讨论。我们所要讨论的是 f(X) 可导的情况。如何确定 f(X) 的极值呢?
最笨的方法就是穷举!!换言之,先试试 f(X1) ,再看看 f(X2) ,不停的尝试 f(Xi) ,直到成为单身贵族……对,我告诉你的解法就是成为单身贵族的解法,因为解空间几乎是无限大的,穷举法太笨!
聪明一点的方式是穷举n次,找其中的最优。先试试 f(X1) ,再看看 f(X2) ,不停的尝试直到 f(Xn) ,找出 f(X1)到f(Xn) 中最优的 f(Xi) 。这个方法的缺陷在于,女性朋友不一定能够找到真正的灵魂伴侣。
再聪明一点的方法固定一些变量,搜索另外一些变量。必须长得帅,像鹿晗;必须有钱,和王思聪一样;必须是初恋。你看解空间一下就变小了。接下来的搜索就简单了很多。如果找不到解,那么就修改某些固定的变量。为什么长相必须像鹿晗?郭德纲也可以接受!这样我们就可以开始新的搜索啦!事实上,这就是绝大多数人,择偶的方式。
如果变量是连续的呢?数学家发现,在这种情况下,搜索策略其实是这样的:
1. 首先选择一个起始的解
X0
。
2. 比较
f(X0+Δ)
,如果
f(X0+Δ)<f(X0)
那么
X0+Δ
是更好的解
3. 另
X1=X0+Δ
,跳到第1步重新执行。
上述方法的核心在于存在一个
X
的更新公式:
上述算法有三个终止条件:
1. 迭代次数达到限额(都已经120岁的单身贵族啦!)
2.
Δn
趋近于0
3.
f(Xn)−f(Xn+1)
趋近于0
下面举个例子,目标函数如下:
假设初始值为 X0=(1,1)T ,令 Δn=(−0.1,−0.1)T ,于是:
Stop!不是
X10
已经达到最优了吗?为什么程序还在跑?问题在于那个
Δn
,如果它能够越接近最小值越小,程序不就可以停下来了吗?越接近你的灵魂伴侣,越需要放慢搜索的速度不是吗?
怎么解决这个问题呢?数学家出场了。我们知道
f(Xn+1)=f(Xn+Δn)
,根据泰勒公式展开就是:
针对该公式求 Δn 的导数,并令结果等于0,则:
现在我们可以解出 Δn !如果你对上述推导的原理感到好奇,不奇怪啊,你不是数学家对吧?总之,我们会算就可以啦。现在用新的公式来求解老问题。
计算过程如下:
数学白痴表示求偏导数矩阵太难理解!!如何破!!数学家马上送上福利:
假设 λ=2 ,我们看看目标函数 f(x,y)=x2+y2+1 的计算过程:
运气不错!如果 λ=4 呢?推导如下:
如果 λ=1 ,推导如下:
可见如果采用新的计算公式, λ 的取值会影响算法的收敛速度,甚至无法收敛。但的确这种算法避免了计算Hessian,数学白痴非常高兴!那么它存在的问题可以解决吗?当然可以,方法就是 动态调整 λ 的取值,从而加快收敛,避免震荡。
最后,再来考虑一下,如果数学白痴连梯度都不会算怎么办?Nelder–Mead Method!对有高等数学背景的人而言,理解Nelder–Mead Method反而很困难!这里就不再详谈了。
数学白痴的福利
我们都不喜欢数学,还好现在是2017年,大量的工作已经由擅长数学的科学家做完了。你所需要的就是找一个算法丰富的库!比如Python的scipy或者matlab。为了写作本文,我对最优化问题进行了很多简化,首先只考虑可导的目标函数,其次也没有考虑函数变量的条件约束(比如
X
必须是整数、
5590

被折叠的 条评论
为什么被折叠?



