2019八大科技趋势,指引你走向技术下一站

“我的成功秘诀,并非以最快速度,冲到球前,而是奔向它即将飞去的方向。”

——冰球传奇Wayne Gretzky

每样科学都有“半衰期”,而计算机科学可能是最短的一个——洗个澡的工夫,就有一半知识要过时了。本文汇总了来自Gartner、阿里达摩院等机构对2019年科技热点,并提炼其中与开发者有关的部分(几乎所有预测中,都提到了区块链),以及产业方向的预测,指引你走向技术的下一站。

区块链商业化应用加速

区块链技术将促进可信数据在路径上重组和优化,从而提高流转和协同效率。在跨境汇款、供应链金融、电子票据和司法存证等众多场景中,区块链将开始融入日常生活。随着“链接”价值的体现,分层架构和跨链互联将成为区块链规模化的技术基础。区块链领域将从过度狂热和过度悲观回归理性,商业化应用有望加速落地。

如今许多“所谓的”区块链项目并没有实现区块链的所有属性,比如高度分布式的数据库。这些受区块链启发的解决方案只是通过自动化业务流程或通过数字化记录来实现运营效率的一种手段。它们有望加强已知实体之间的信息共享,并改善跟踪并追踪物理和数字资产的机会。

这些方法并没有发挥区块链真正颠覆的价值,可能加大厂商锁定的风险。选择这个方法的企业应了解限制因素,准备好逐步完成区块链解决方案,还要明白这点:可以使用更高效、更优化地使用现有的非区块链技术获得相同的效果。

自动驾驶,进入冷静发展道路

依靠“单车智能”,我们可能在很长时间内都无法实现可靠的自动驾驶,但这并不意味着自动驾驶技术与应用进入寒冬。车路协同技术路线,会加快无人驾驶的到来。在未来2-3年,物流、运输等限定场景为代表的自动驾驶商业化应用会迎来新的进展,如固定线路公交、无人配送、园区微循环等商用场景将快速落地。

AI驱动开发

过去,专业的数据科学家必须与应用软件开发人员合作,共同开发大多数由AI增强的解决方案,而现在流行这种模式——专业开发人员可以单枪匹马,使用作为一项服务而提供的预定义模型。这为开发人员提供了由AI算法和模型组成的生态系统,并提供了将AI功能和模型集成到解决方案中的定制开发工具。

随着AI运用于开发流程本身,使各种数据科学、应用软件开发和测试功能实现自动化,专业应用软件开发面临另一批机会。未来5年,至少40%的新应用软件开发项目会在团队中有AI开发人员协同工作。

专用芯片挑战GPU的统治地位

当下,计算和存储之间数据搬移已成为瓶颈,新一代基于3D堆叠存储技术的AI芯片架构已成为趋势。

AI芯片中数据带宽的需求会进一步推动3D堆叠存储芯片在AI训练芯片中的普遍应用。而类脑计算芯片也会在寻找更合适的应用中进一步推动其发展。在数据中心的训练场景,AI专用芯片将挑战GPU的绝对统治地位。

专用AI芯片以及更强大的处理能力、存储和其他先进功能将被添加到更广泛的边缘设备中。嵌入式物联网世界的极端异质性和工业系统等资产的长生命周期将带来重大的管理挑战。从长远看,随着5G成熟,不断扩展的边缘计算环境将更加强大的通信回到集中式服务。5G提供更低延迟、更高带宽,并且每平方公里节点的数量急剧增加。

超大规模图神经网络系统将赋予机器常识

“图”是一种数据结构,它对一组对象(节点)及其关系(边)进行建模。近年来,由于图结构的强大表现力,用机器学习方法分析图的研究越来越受到重视。图神经网络(GNN)是一类基于深度学习的处理图域信息的方法。由于其较好的性能和可解释性,GNN最近已成为一种广泛应用的图分析方法,在结构化场景中,GNN被广泛应用在社交网络、推荐系统、物理系统、化学分子预测、知识图谱等领域。

单纯的深度学习已经成熟,而结合了深度学习的图神经网络将端到端学习与归纳推理相结合,有望解决深度学习无法处理的关系推理、可解释性等一系列问题。

计算体系结构被重构

未来的计算、存储、网络不仅需要满足AI对高通量计算力的需求,也要满足物联网场景对低功耗的需求。基于FPGA、GPU、ASIC等计算芯片的异构计算架构,以及新型存储器件的出现,已为计算架构的演进拉开了序幕。

从过去以CPU为核心的通用计算而走向由应用驱动和技术驱动,所带来的领域特定体系结构的颠覆性改变,将加速人工智能甚至是量子计算时代到来。

5G催生全新应用场景

第五代移动通信技术,主要特点是波长为毫米级,超宽带,超高速度,超低延时。它将使移动带宽大幅度增强,提供近百倍于4G的峰值速率,促进基于4K/8K超高清视频、AR/VR等沉浸式交互模式的逐步成熟。

5G将带来海量的机器类通信及连接的深度融合。网络向云化、软件化演进,网络可切片成多个相互独立、平行的虚拟子网络,为不同应用提供虚拟专属网络,加上高可靠、低时延、大容量的网络能力,将使车路协同、工业互联网等领域获得全新的技术赋能。

数字身份愈加重要

生物识别技术正逐渐进入大规模应用阶段。随着3D传感器的快速普及、多种生物特征的融合,每个设备都能更聪明地“看”和“听”。生物识别和活体技术也将重塑身份识别和认证,数字身份将成为人的第二张身份证。从手机解锁、小区门禁到餐厅吃饭,到高铁进站、机场安检以及医院看病,靠脸走遍天下的时代正在加速到来。

另一方面,数字道德和隐私是个人、组织和政府日益关注的一个问题。人们越来越关注公共和私营部门的组织如何使用他们的个人信息,没有积极主动地打消这些顾虑的组织只会遇到越来越强烈的反对。

推荐阅读:

 

  • 38
    点赞
  • 95
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
联合国世界知识产权组织WIPO发布了首份《2019技术趋势——人工智能报告》(WIPO Technology Trends 2019 – Artificial Intelligence)。报告显示,自20世纪50年代人工智能出现以来至2016年,科研人员已提交超过34万份人工智能发明专利申请,发表的科学出版物超过160万篇(部)。而这其中的专利超过半数是2013年以后公开的。其中在国别专利总申请量方面,美国、中国、日本排在前三位。 在公司申请方面,美国国际商业机器公司(IBM)的人工智能专利申请数量最多,截至2016年底拥有8290项发明,其次为美国微软公司(Microsoft),拥有5930项发明;前五大申请方还有日本东芝公司(TOSHIBA)、韩国三星集团(Samsung)、日本电气集团(NEC)。 许多与AI相关的技术可以在不同行业中得到应用,涉及诸多领域。其中交通运输领域是人工智能专利近年来增长最多的领域,2013年至2016年间专利申请年增长率为33%,与2013年的3738件专利申请相比,2016年达到8764件申请,增长134%。在运输类别中迅速崛起的是航空航天/航空电子设备(年增长率为67%,2016年提交1,813件)和自动驾驶汽车(年增长率为42%,2016年提交了5,569件)。 如果回看更长的时间区间,从2006-2016年期间,交通运输领域的迅速发展则变得更加明显:2006年仅占AI领域总申请量的20%,到2016年它已经占据了申请量的三分之一(超过8,700件申请)。 在交通运输领域,最大量的专利申请来自于汽车制造商或供应商,包括日本丰田、德国博士和韩国现代,在与交通运输领域的相关应用方面,美国谷歌公司和IBM公司也有非常大量的专利储备。其中在交通领域中的细分技术领域中,自动驾驶领域的专利申请量则最大。 可以预见,未来若干年人工智能会在细分领域发挥更大的作用。笔者以近年来增长最为明显的交通运输领域下的自动驾驶领域为例,其涉及的技术类别的种类范围包括整车制造、传感器、地图导航、网络传输、数据分析、人工智能等,其中人工智能的研究在汽车的智能网联(车联网)方面的现阶段可以涵盖诸如智能座舱、多屏互动、抬头显示等以与其他平台可以进行无缝对接。在细分应用场景方面,大众汽车公司称其将数千张图像加入了图像识别算法,因此系统能够学会区分道路使用者;从麻省理工学院衍生的一家初创公司正在研究一个基于了解人类如何以及为何做出影响他们驾驶方式的决策的解决方案,都是很好的应用实例,对应的专利申请也必然会呈现持续性增长。 2018年,爱立信公司创建了一个生态系统来支持在瑞典斯德哥尔摩的自动驾驶公交车试验,而如果想扩展更多的线路,需要具有更多具有强大计算能力的传感器。但除了技术挑战外,AI开发人员面临的挑战之一是必须清除测试的监管障碍。在2018年初开始试验时, 爱立信公司表示,最难的环节就是获得许可,因为监管当局不会将没有方向盘和后视镜的自动驾驶公交车视为车辆。 关于技术趋势(AI)对政策的影响方面,WIPO报告也指出了两者之间的互相影响,在政策制定、数据控制、研究支持、IP保护等方面,AI的发展也引起了政府政策制定方面的很多问题。 对此,在WIPO报告中,位于硅谷的知名投资公司Andreessen Horowitz的合伙人Frank Chen以自动驾驶为例,表示: “监管部门打算制定完善、周全的政策本身,必然会阻止相关技术的发展。只有减少对技术的监管,才能真正吸引想发展对应技术的公司投入进来。在自动驾驶方面,这样例子在美国很多,特别是亚利桑那州和佛罗里达州,它们在允许无人驾驶汽车上路方面,走在了前面,而其他城市地区则在等待与观察”。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值