排序算法学习笔记

排序算法

较慢算法

  1. 冒泡排序

    实现:

    void BubbleSort(int* a, int n) {
    	for (int i = 0; i < n - 1; i++) {
    		int flag = 1;
    		for (int j = 0; j < n - i - 1; j++) {
    			if (a[j] < a[j + 1]) {
    				swap(&a[j], &a[j + 1]);
    				flag = 0;
    			}
    		}
    		if (flag)break;
    	}
    }
    

    时间复杂度:O(N^2)

    空间复杂度:O(1)

    稳定性分析:由于只有相邻两个数之间存在交换,只有需要变动位置的数的相对位置会改变。

  2. 选择排序

    思路:遍历找到最大或者最小的值,放到第一位,找到第二大的,放到第二位,以此类推

    void SelectSort(int* a, int n) {
    
    	int begin = 0, end = n - 1;
    	while (begin < end) {
    		int mini = begin, maxi = begin;
    		for (int i = begin+1; i <= end; i++) {
    			if (a[mini] > a[i]) {
    				mini = i;
    			}
    			if (a[maxi] < a[i]) {
    				maxi = i;
    			}
    		}
    		swap(&a[mini],&a[begin]);
    		if (maxi == begin)maxi = mini;
    		swap(&a[end] , &a[maxi]);
    		begin++;
    		end--;
    	}
    }
    

    时间复杂度:O(N^2)

    空间复杂度:O(1)

    稳定性:在存在相等的数据下,由于交换操作,会将已排序好的数据变换,因此并不稳定

  3. 插入排序

    思路:将数组分为有序区和无序区,从无序区中拿数插入到有序区中。

    实现:

    void InsertSort(int* a, int n) {
    	
    	for (int i = 0; i < n - 1; ++i) {
    		int end = i;
    		int tmp = a[end + 1];
    		
    		while (end >= 0) {
    			if (tmp < a[end]) {
    				a[end + 1] = a[end];
    				end--;
    			}
    			else {
    				break;
    			}
    		}
    		a[end + 1] = tmp;
    
    	}
    }
    

    时间复杂度:O(N^2)

    空间复杂度:O(1)

    稳定性:只是插入而并不造成其他元素相对位置的变化,因此是稳定的

    较快排序

    1. 堆排序

      思路:建立堆,将堆的的根节点和最后一个节点进行交换,之后再次建立一个更小的堆

      实现:

      void AdjustDwon(int* a, int n, int root) {
      	int child = root * 2 + 1;
      	while (child < n) {
      		if (a[child] < a[child + 1] && child + 1 < n) {
      			child++;
      		}
      		if (a[root] < a[child]) {
      			swap(&a[root], &a[child]);
      			root = child;
      			child = root * 2 + 1;
      		}
      		else {
      			break;
      		}
      
      	}
      
      
      }
      void HeapSort(int* a, int n) {
      	
      	for (int i = (n - 1 - 1) / 2; i >= 0; i--) {
      		AdjustDwon(a, n, i);
      	}
      
      	int end = n - 1;
      
      	while (end > 0) {
      		swap(a[0], a[end]);
      		AdjustDwon(a, end, 0);
      		end--;
      	}
      
      }
      

      时间复杂度:O(nlogn)

      空间复杂度:O(1)

      稳定性:由于不断地交换以及建堆可能会造成原本顺序的变化,因此不稳定

      2.快速排序

      实现

      int getmidi(int* a, int left,int right) {
      	int midi = (left + right) / 2;
      
      	if (a[left] > a[midi]) {
      		if (a[midi] > a[right])return midi;
      		else if (a[left] < a[right]) return left;
      		else return right;
      	}
      	else {
      		if (a[midi] < a[right])return midi;
      		else if (a[left] > a[right])return left;
      		else return right;
      	}
      }
      
      int PartSort1(int* a, int left, int right) {
      	int begin = left, end = right;
      	int keyi = getmidi(a,left,right);
      	while (begin < end) {
      		while (begin < end && a[end]>=a[keyi]) {
      			end--;
      		}
      		while (begin < end && a[begin] <= a[keyi]) {
      			begin++;
      		}
      		swap(&a[begin], &a[end]);
      	}
      	swap(&a[keyi], &a[begin]);
      	keyi = begin;
      	return keyi;
      }
      
      
      void QuickSort(int* a, int left, int right) {
      	if (left >= right)return;
      
      
      	if ((right - left + 1) < 10)
      	{
      		InsertSort(a + left, right - left + 1);
      	}
      	else {
      		int keyi = PartSort1(a, left, right);
      
      		QuickSort(a, left, keyi - 1);
      		QuickSort(a, keyi + 1, right);
      	}
      	
      }
      
      

      时间复杂度:O(nlogn)

      空间复杂度:O(logn)

      稳定性:显然,存在交换,于是使得快排分区发生了变化,进而影响了已稳定的元素,造成不稳定

      3.归并排序

      思路:通过不断的二分分隔,直到每组只包含一个元素,达成有序,再将每组的元素进行合并,达成每组的有序

      实现:

      void MergeSort(int* a, int n) {
      	int* tmp = (int*)malloc(sizeof(int) * n);
      	if (tmp == NULL) {
      		printf("malloc fail\n");
      		return;
      	}
      
      	_MergeSort(a, tmp, 0, n - 1);
      
      	free(tmp);
      
      	tmp = NULL;
      
      }
      
      void _MergeSort(int* a, int *tmp, int begin, int end) {
      
      	if (begin == end)return;
      
      
      	int mid = (begin + end) / 2;
      
      	_MergeSort(a, tmp, begin, mid);
      	_MergeSort(a, tmp,mid + 1, end);
      	
      	int begin1 = begin, end1 = mid;
      	int begin2 = mid + 1, end2 = end;
      	int i = begin;
      
      	while (begin1 <= end1 && begin2 <= end2 ) {
      		if (a[begin1] < a[begin2])
      			tmp[i++] = a[begin1++];
      
      		else tmp[i++] = a[begin2++];
      	}
      
      	while (begin1 <= end1) {
      		tmp[i++] = a[begin1++];
      	}
      	while (begin2 <= end2) {
      		tmp[i++] = a[begin2++];
      	}
      	
      	memcpy(a + begin, tmp + begin, (end - begin + 1)*sizeof(int));
      }
      
      

      时间复杂度:O(nlogn)

      空间复杂度:O(n)

      稳定性:由于在归并时,相同的元素会优先选择左边的元素,即保持了原顺序的相对不变

      4.希尔排序:

      思路:在插入排序的基础上,进行预排序,将数据分组,对每组进行插入排序,最后进行总插入排序

      实现:

      void ShellSort(int* a, int n) {
      	int gap = n;
      
      	while (gap > 1) {
      		gap = gap / 3 + 1;
      
      		for (int i = 0; i < n - gap; i += gap) {
      			int end = i;
      			int tmp = a[end + gap];
      			while (end >= 0) {
      				if (tmp < a[end]) {
      					a[end + gap] = a[end];
      					end -= gap;
      				}
      				else {
      					break;
      				}
      			}
      			a[end+gap] = tmp;
      		}
      	}
      
      }
      

      时间复杂度:O(n^1.3)

      空间复杂度:O(1)

      稳定性:由于分组时可能会将相同的元素分到不同的组,导致相对顺序发生变化,因此不稳定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值