题目:
题意:
Q1:求入度为0的强连通分量的个数
Q2:入度为0的强连通分量的个数 与 出度为0的强连通分量的个数取max(这里记得特判num=1的情况)
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#define M 1000005
#define N 100005
using namespace std;
int nxt[M*2],point[M*2],v[M*2],tot,tmp,n,m,NN,num;
int dfn[N],low[N],strack[N],bb[N],x[N],y[N],out[N],belong[N],in[N];
bool vis[N];
void addline(int x,int y){++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;}
void tarjan(int now)
{
dfn[now]=low[now]=++NN; vis[now]=1; strack[++tmp]=now;
for (int i=point[now];i;i=nxt[i])
if (!dfn[v[i]])
{
tarjan(v[i]);
low[now]=min(low[now],low[v[i]]);
}
else if (vis[v[i]]) low[now]=min(low[now],dfn[v[i]]);
if (low[now]==dfn[now])
{
num++;
while (strack[tmp]!=now)
{
belong[strack[tmp]]=num;
vis[strack[tmp]]=0; tmp--;
}
belong[strack[tmp]]=num;
vis[strack[tmp]]=0; tmp--;
}
}
int main()
{
int n,i,s,m=0,inn=0,outt=0;
scanf("%d",&n);
for (i=1;i<=n;i++)
{
scanf("%d",&s);
while (s!=0)
{
x[++m]=i;
y[m]=s;
addline(x[m],y[m]);
scanf("%d",&s);
}
}
for (i=1;i<=n;i++)
if (!dfn[i]) tarjan(i);
for (i=1;i<=m;i++)
if (belong[x[i]]!=belong[y[i]])
++in[belong[y[i]]],++out[belong[x[i]]];
for (i=1;i<=num;i++)
{
if (!in[i]) inn++;
if (!out[i]) outt++;
}
if (num==1) printf("1\n0");
else printf("%d\n%d",inn,max(inn,outt));
}