原文作者:Xiang Wang,Xiangnan He,Yixin Cao,Meng Liu,Tat-Seng Chua
原文标题:KGAT: Knowledge Graph Attention Network for Recommendation
原文来源:KDD 2019
原文链接:https://arxiv.org/abs/1905.07854
本文提出了一种新的推荐方法KGAT,能够根据实体间的高阶关系特征建模,并具有一定的可解释性。以端到端方式对KG的高阶连通性进行了显式建模。递归地从节点的邻居(可以是用户、项目或属性)传播嵌入,并使用注意机制来区分邻居的重要性。
KGAT: Knowledge Graph Attention Network for Recommendation
问题定义
1)Collaborative Knowledge Graph(CKG)
作者首先建立一个item-entity对齐集合 A = { ( i , e ) ∣ i ∈ I , e ∈ E } \mathcal{A = \{(}i,e) \mid i \in I,e\mathcal{\in E\}} A={ (i,e)∣i∈I,e∈E},其中 ( i , e ) (i,e) (i,e)表示item在KG中与一个实体对齐。CKG将用户行为和item知识编码为统一的关系图谱。用户行为表示为三元组 ( u , Interact , i ) \left( u,\text{Interact},i \right) (u,Interact,i), y ui = 1 y_{\text{ui}} = 1 yui=1表示用户和item之间有一个额外的关系 Interact \text{Interact} Interact。那么整个知识图谱为: G = { ( h , r , t ) ∣ h , t ∈ E ′ , r ∈ R ′ } , E ′ = E ∪ U , R ′ = R ∪ Interact \mathcal{G =}\left\{ \left( h,r,t \right) \mid h,t \in \mathcal{E}^{'},r \in \right.\ \left. \ \mathcal{R}^{'} \right\},\mathcal{E}^{'}\mathcal{= E \cup U},\mathcal{R}^{'}\mathcal{= R \cup}\text{Interact} G={ (h,r,t)∣h,t∈E′,r∈ R′},E′=E∪U,R′=R∪Interact。
2)任务描述
输入CKG,包括user-item二分图,知识图谱。
输出能够预测用户u与item i交互的概率 y ^ ui {\widehat{y}}_{\text{ui}} y ui的预测函数。
3)高阶连通性
作者认为探索高阶连通性对于高质量的推荐是必不可少的。节点间的高阶连通性定义为多跳的关系路径: e 0 ⟶ r 1 e 1 ⟶ r 2 ⋯ ⟶ r L e L e_{0}\overset{r_{1}}{\longrightarrow}e_{1}\overset{r_{2}}{\longrightarrow}\cdots\overset{r_{L}}{\longrightarrow}e_{L} e0⟶r1e1⟶