【论文笔记】KGAT: Knowledge Graph Attention Network for Recommendation

KGAT是一种结合知识图谱的推荐系统方法,通过高阶连通性建模提高推荐质量。它使用注意力机制传播和聚合节点嵌入,有效地捕捉协同信号,提供可解释性。
摘要由CSDN通过智能技术生成

原文作者:Xiang Wang,Xiangnan He,Yixin Cao,Meng Liu,Tat-Seng Chua

原文标题:KGAT: Knowledge Graph Attention Network for Recommendation

原文来源:KDD 2019

原文链接:https://arxiv.org/abs/1905.07854

本文提出了一种新的推荐方法KGAT,能够根据实体间的高阶关系特征建模,并具有一定的可解释性。以端到端方式对KG的高阶连通性进行了显式建模。递归地从节点的邻居(可以是用户、项目或属性)传播嵌入,并使用注意机制来区分邻居的重要性。

KGAT: Knowledge Graph Attention Network for Recommendation

问题定义

1)Collaborative Knowledge Graph(CKG)

作者首先建立一个item-entity对齐集合 A = { ( i , e ) ∣ i ∈ I , e ∈ E } \mathcal{A = \{(}i,e) \mid i \in I,e\mathcal{\in E\}} A={ (i,e)iI,eE},其中 ( i , e ) (i,e) (i,e)表示item在KG中与一个实体对齐。CKG将用户行为和item知识编码为统一的关系图谱。用户行为表示为三元组 ( u , Interact , i ) \left( u,\text{Interact},i \right) (u,Interact,i) y ui = 1 y_{\text{ui}} = 1 yui=1表示用户和item之间有一个额外的关系 Interact \text{Interact} Interact。那么整个知识图谱为: G = { ( h , r , t ) ∣ h , t ∈ E ′ , r ∈     R ′ } , E ′ = E ∪ U , R ′ = R ∪ Interact \mathcal{G =}\left\{ \left( h,r,t \right) \mid h,t \in \mathcal{E}^{'},r \in \right.\ \left. \ \mathcal{R}^{'} \right\},\mathcal{E}^{'}\mathcal{= E \cup U},\mathcal{R}^{'}\mathcal{= R \cup}\text{Interact} G={ (h,r,t)h,tE,r  R},E=EUR=RInteract

2)任务描述

输入CKG,包括user-item二分图,知识图谱。

输出能够预测用户u与item i交互的概率 y ^ ui {\widehat{y}}_{\text{ui}} y ui的预测函数。

3)高阶连通性

作者认为探索高阶连通性对于高质量的推荐是必不可少的。节点间的高阶连通性定义为多跳的关系路径: e 0 ⟶ r 1 e 1 ⟶ r 2 ⋯ ⟶ r L e L e_{0}\overset{r_{1}}{\longrightarrow}e_{1}\overset{r_{2}}{\longrightarrow}\cdots\overset{r_{L}}{\longrightarrow}e_{L} e0r1e1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值