题意:
求N1+N2+...+Nn=N. 使N1 ,N2...Nn都不相等且他们的乘积最大?
分析:要多思考@_@
即求出以2起始的最大连续自然数序列之和sum,使得sum的值不超过输入数n,
然后分情况讨论:
设此最大序列为2、3、……、w,则:
1。若剩余值(n-sum)等于w,则最后输出序列为:3、4、……、w、w+2,即将原最大序列每项加1,再将最后剩余的一个1加到最后一项上。(这一项结果很显然)
2。若剩余值(n-sum)小于w,则从序列的最大项i开始,从大到小依次将每项加1,直到剩余值用完。(若将其按其他方式相加将会引起冲突即有两项是相等的)
详细叙述另参考:http://www.cnblogs.com/rainydays/archive/2012/12/17/2821428.html
任何一个数字,只要能拆分成两个大于1的数字之和,那么这两个数字的乘积一定大于等于原数。
也就是说,对于连乘式中,如果将一个乘数a更换为两个数字b×c(a=b+c且b>1,c>1),那么乘积只可能增大或不变,不会减小。所以我们拆分的原则就是将这些数字拆得尽量小,拆成许多2的乘积是最好的。又因为题目约束各个数字不能相同,则我们拆分的结果最理想的情况是从2开始的公差为1的等差数列。 但是有时是无法构成这样的等差数列的,因为构成到某一位时会出现构建下一位不够用的情况,例如,n=6时,6=2+3+1。当我们要构成4的时候只剩下1了。如果余数是1,那么我们必然要加到前面的某一个数字上,否则乘积无法增大。如果是大于1的数,也必须加在前面的某些数字上,否则如果单乘会出现重复数字。
对于一个余数,应该每次将余数中的一个1分配给数列中最小的数字,这样才能使得乘积每次增大的幅度最大,因为增加量是所有除了最小乘数之外的数字的乘积。但是这样做会造成数字重复,所以唯一可以避免数字重复的方法是将这些1从最大的数字开始依次向较小数分配,让每个乘数增加1。但是这样仍然可能有剩余,但最多剩余1,因为再多就足够构成下一个乘数的了,同样为了避免重复,我们只能将这个1加在最大的乘数上。
1032 | Accepted | 172K | 0MS | C++ | 384B |
#include<iostream> #include<cstdio> using namespace std; int main(){ int a[1000],n; while(~scanf("%d",&n)){ int sum=0,i; for(i=2;sum+i<=n;i++){ sum+=i; a[i-2]=i; } n-=sum; i=i-3; sum=i; while((i>=0)&&(n>0)){ n--; a[i]++; i--; } if(n>0) a[sum]++; for(i=0;i<=sum;i++) printf("%d ",a[i]); puts(""); } return 0; }