概率与期望 ———— T1 [LOJ 1083]

该问题讨论的是在整数N随机变成其因子的过程下,期望需要多少次才能变成1。通过动态规划的方法,计算每个整数变成1的期望步数,最终得出N的期望步数。代码示例给出了C++的解决方案,使用了动态规划数组dp来存储每个数的期望值。
摘要由CSDN通过智能技术生成

题目

给你一个整数 N ( 1 < = N < = 1 0 5 ) N(1 <= N <= 10 ^ 5) N(1<=N<=105),每次 N N N会随机变成 N N N的某个因子,问期望几次会变成 1 1 1

分析

1. 画图理解期望

在这里插入图片描述

平均值

期望就是所有可能取值的平均值,即
E ( x ) = ∑ i = 1 ∞ X i E(x) = \sum_{i = 1}^{\infty} X_i E(x)=i=1Xi

概率

期望也可以理解为概率,即
令 P i 表示取到 X i 的概率,则 E ( x ) = ∑ i = 1 ∞ P i × X i 令 P_i 表示取到X_i的概率 ,则 \\ E(x) = \sum_{i = 1}^{\infty}P_i \times X_i Pi表示取到Xi的概率,则E(x)=i=1Pi×Xi
i ∈ ± 1 i\in{\pm1} i±1

2.数学式的表达(dp)

令 d p x 表示整数 x 变成 1 的期望, n 表示 x 的因数个数则 d p x = ∑ i ∈ i ≡ 0 ( m o d x ) d p i n + 1 令 dp_x表示整数x变成1的期望,n 表示 x 的 因数个数 则\\ dp_x = \frac{\sum_{i\in{i \equiv 0\pmod{x}}}dp_i}{n} + 1 dpx表示整数x变成1的期望,n表示x的因数个数则dpx=nii0(modx)dpi+1
但是 x ∈ i ≡ 0 ( m o d x ) x \in{i \equiv 0\pmod{x} } xi0(modx)所以不是dp,我们进行移向

d p x = ( ∑ i ∈ i ≡ 0 ( m o d x ) , i ≠ x d p i ) + n n − 1 dp_x = \frac{(\sum_{i\in{i \equiv 0\pmod{x},i \neq x}}{dp_i}) + n}{n - 1} dpx=n1(ii0(modx),i=xdpi)+n
初始化 d p 1 = 0 dp_1 = 0 dp1=0即可转移

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5;
int n;
double dp[N];
int main() {
	scanf("%d", &n);
	dp[1] = 0;
	for (int i = 2; i <= n; i++) {
		double sum = 0;
		int cnt = 0;
		for (int j = 1; j * j <= i; j++) {
			if ( i % j == 0 ) {
				cnt++;
				sum += dp[j];
				if (j * j != i) {
					cnt ++;
					sum += dp[i / j];
				}
			}
		}
		sum += cnt;
		dp[i] = sum / (cnt - 1);
	}
	printf("%.2lf",dp[n]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值