【数论基础】—— 二项式定理

二项式定理

内容

( x + y ) n = ∑ k = 0 n ( n k ) x n − k y k (x + y)^n = \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} x^{n-k}y^k (x+y)n=k=0n(nk)xnkyk

理解

式子的理解比较简单

( x + y ) n = ( x + y ) × ( x + y ) × ( x + y ) × ⋯ × ( x + y ) (x + y)^n = (x + y) \times (x + y) \times (x + y) \times \cdots \times (x + y) (x+y)n=(x+y)×(x+y)×(x+y)××(x+y)

其中每一个括号内我们只可能选一个 x x x 或者 y y y,且必须选一个 x x x 或者 y y y
因此,每一项的次数都是 n n n

那么比如 x a y n − a x^ay^{n-a} xayna 有多少种选法呢?
就是 n n n 个括号内选 a a a 个选取 x x x 与选取的顺序无关,就有 ( n a ) \begin{pmatrix}n\\a\end{pmatrix} (na) 种。
因此系数就为 ( n a ) \begin{pmatrix}n\\a\end{pmatrix} (na)

变形

( x + y ) n = ∑ k = 0 n ( n n − k ) x n − k y k (x + y)^n = \sum_{k=0}^{n} \begin{pmatrix} n \\ n-k \end{pmatrix} x^{n-k}y^k (x+y)n=k=0n(nnk)xnkyk
( x + y ) n = ∑ k = 0 n ( n n − k ) x k y n − k (x + y)^n = \sum_{k=0}^{n} \begin{pmatrix} n \\ n-k \end{pmatrix} x^{k}y^{n-k} (x+y)n=k=0n(nnk)xkynk
( x + y ) n = ∑ k = 0 n ( n k ) x k y n − k (x + y)^n = \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} x^{k}y^{n-k} (x+y)n=k=0n(nk)xkynk
( x + 1 ) n = ∑ k = 0 n ( n k ) x k = ∑ k = 0 n ( n n − k ) x k (x + 1)^n = \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} x^k = \sum_{k=0}^{n} \begin{pmatrix} n \\ n - k \end{pmatrix} x^k (x+1)n=k=0n(nk)xk=k=0n(nnk)xk

逆用 二项式定理

x = 1 , y = 2 x=1,y=2 x=1,y=2 的时候
( 1 + 2 ) n = ( n 0 ) 2 0 + ( n 1 ) 2 1 + ⋯ + ( n n ) 2 n = 3 n (1 + 2)^n = \begin{pmatrix} n \\ 0 \end{pmatrix} 2^0 + \begin{pmatrix} n \\ 1 \end{pmatrix} 2^1 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} 2^n = 3^n (1+2)n=(n0)20+(n1)21++(nn)2n=3n

遇到中间的这一种形式( ( n 0 ) 2 0 + ( n 1 ) 2 1 + ⋯ + ( n n ) 2 n \begin{pmatrix} n \\ 0 \end{pmatrix} 2^0 + \begin{pmatrix} n \\ 1 \end{pmatrix} 2^1 + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} 2^n (n0)20+(n1)21++(nn)2n)的时候,要能看明白

x = y = 1 x=y=1 x=y=1 的时候
( x − y ) n = ( n 0 ) − ( n 1 ) + ( n 2 ) − ⋯ + ( − 1 ) n ( n n ) = 0 ( n ≥ 1 ) ( x + y ) n = ( n 0 ) + ( n 1 ) + ( n 2 ) + ⋯ + ( n n ) = 2 n (x-y)^n = \begin{pmatrix} n \\ 0 \end{pmatrix} - \begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} - \cdots + (-1)^n\begin{pmatrix} n \\ n \end{pmatrix} = 0 (n \ge 1) \\ (x+y)^n = \begin{pmatrix} n \\ 0 \end{pmatrix} + \begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} + \cdots + \begin{pmatrix} n \\ n \end{pmatrix} = 2^n (xy)n=(n0)(n1)+(n2)+(1)n(nn)=0(n1)(x+y)n=(n0)+(n1)+(n2)++(nn)=2n

推论
( n 0 ) + ( n 2 ) + ( n 4 ) + ⋯ = 2 n − 1 \begin{pmatrix} n \\ 0 \end{pmatrix} + \begin{pmatrix} n \\ 2 \end{pmatrix} + \begin{pmatrix} n \\ 4 \end{pmatrix} + \cdots = 2^{n-1} (n0)+(n2)+(n4)+=2n1
( n 1 ) + ( n 3 ) + ( n 5 ) + ⋯ = 2 n − 1 \begin{pmatrix} n \\ 1 \end{pmatrix} + \begin{pmatrix} n \\ 3 \end{pmatrix} + \begin{pmatrix} n \\ 5 \end{pmatrix} + \cdots = 2^{n-1} (n1)+(n3)+(n5)+=2n1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值