MATLAB代码:含风光柴储微网多目标优化调度
关键词:微网调度 风光柴储 粒子群算法 多目标优化
参考文档:《基于多目标粒子群算法的微电网优化调度》
仿真平台:MATLAB 平台采用粒子群实现求解
优势:代码注释详实,适合参考学习,非目前烂大街的版本,程序非常精品,请仔细辨识
主要内容:代码构建了含风机、光伏、柴油发电机以及储能电站在内的微网优化运行模型,并且考虑与上级电网的购售电交易,综合考虑了多方经济成本以及风光新能源消纳等多方面的因素,从而实现微网系统的经济运行,求解采用的是MOPSO算法(多目标粒子群算法),求解效果极佳,具体可以看图 代码属于精品代码
标题:基于多目标粒子群算法的风光柴储微网优化调度
摘要:本文基于多目标粒子群算法,构建了含风光柴储储能电站在内的微网优化运行模型,并考虑与上级电网的购售电交易,综合考虑了多方经济成本以及风光新能源消纳等多方面的因素,从而实现微网系统的经济运行。文章采用了MATLAB平台和MOPSO算法实现求解,代码经过详细注释,非常适合学习参考。此代码属于精品代码,求解效果极佳。
关键词:微网调度,风光柴储,粒子群算法,多目标优化,MATLAB
1.引言
随着可再生能源的发展,微网系统已成为新能源领域的研究热点之一。微网系统由多种不同类型的电力源组成,包括风力发电、光伏发电、电池储能等,还包括传统的柴油发电机组,可以提供可靠的电力供应和应对应急情况。然而,微网系统的优化运行仍然是一个挑战,需要综合考虑多方面的因素,如经济成本、能源消纳等。
本文基于多目标粒子群算法,构建了含风光柴储储能电站在内的微网优化运行模型,并考虑与上级电网的购售电交易,综合考虑了多方经济成本以及风光新能源消纳等多方面的因素,从而实现微网系统的经济运行。
2.微网优化运行模型
本文构建的微网系统由风力发电、光伏发电、柴油发电机和储能电池组成。同时,考虑与上级电网的购售电交易,用于满足微网中电力需求的瞬时变化。
2.1 风光柴储微网系统模型
风光柴储微网系统模型如图1所示。
图1 风光柴储微网系统模型
其中,$P_w$为风力发电机的输出功率,$P_p$为光伏发电机的输出功率,$P_d$为柴油发电机的输出功率,$P_b$为电池储能的输出功率。$P_r$为微网系统的总负荷功率,$P_g$为微网系统向上级电网出售电力的功率,$P_l$为从上级电网购买电力的功率。
2.2 微网调度模型
微网调度模型的目标是实现经济运行,同时满足微网系统的电力需求。多目标优化问题可以用多个目标函数表示,比如经济成本、能源消纳等。
本文采用三个目标函数:总经济成本、风电功率消纳率和光伏功率消纳率。其中,总经济成本包括燃料成本、光伏、风力发电机的维护成本、储能电池的成本以及上级电网购电的成本。风电功率消纳率和光伏功率消纳率分别表示风力和光伏发电机产生的电力在微网系统中的利用率。
经过优化求解,得到微网系统中各电源的输出功率、电池的充放电功率等,从而实现微网系统的经济运行。
3.多目标粒子群算法
多目标粒子群算法(MOPSO)是一种常用的多目标优化算法,其基本思想是将粒子群算法与多目标优化相结合。本文采用MOPSO算法实现微网系统的优化调度。
MOPSO算法的核心是粒子群模型。粒子群的每个粒子代表一个解,在搜索空间中移动,通过更新粒子的位置和速度来不断优化多个目标函数。每个粒子都有自己的“历史最优解”和“全局最优解”,用来辅助粒子的搜索。
在多目标优化问题中,粒子的适应度不再是单一的目标函数值,而是多个目标函数值。MOPSO算法采用了非支配排序和拥挤度距离来衡量粒子的适应度,从而实现多目标优化。
4.代码实现
微网系统的优化调度采用MATLAB平台实现,MOPSO算法由MATLAB的MOPSO工具箱提供。
本文提供的代码包含了微网系统的优化调度全部程序,包括初始化、多目标优化、求解过程和结果输出等。代码经过详细注释,非常适合学习参考。此代码属于精品代码,求解效果极佳。
5.优化结果分析
本文采用所构建的微网系统进行仿真实验,结果如图2所示。
图2 微网系统的优化结果
从图2中可以看出,经过优化调度后,微网系统中各电源的输出功率、电池的充放电功率等得到了优化,实现了微网系统的经济运行。同时,风电功率消纳率和光伏功率消纳率也得到了提高。
6.结论
本文基于多目标粒子群算法,构建了含风光柴储储能电站在内的微网优化运行模型,并考虑与上级电网的购售电交易,综合考虑了多方经济成本以及风光新能源消纳等多方面的因素,从而实现微网系统的经济运行。代码经过详细注释,非常适合学习参考。此代码属于精品代码,求解效果极佳。
相关代码,程序地址:http://lanzouw.top/662165662175.html